
Las «vacunas» ARNm contra Covid no son seguras de acuerdo a estudios realizados que incluyen 184 millones de personas. Los 4 estudios que así lo demuestran son:
FAKSOVA ET AL (n=99 millones):
- ➊ Miocarditis (+510% después de la inyección de ARNm)
- ➋ Encefalomielitis diseminada aguda (+278% después de la inyección de ARNm)
- ➌ Trombosis del seno venoso cerebral (+223% después de la inyección del vector viral)
- ➍ Síndrome de Guillain-Barré (+149% tras la inyección del vector viral)
• RAHELEH ET AL (n= 85 millones):
- ➊ Ataque cardíaco (+286% después de la segunda dosis)
- ➋ Accidente cerebrovascular (+240% después de la primera dosis)
- ➌ Enfermedad de la arteria coronaria (+244% después de la segunda dosis)
- ➍ Arritmia cardíaca (+199% después de la primera dosis)
• HULSCHER ET AL (n= 325 autopsias):
Se demostró un vínculo causal entre las inyecciones contra la COVID-19 y la muerte a través de múltiples sistemas orgánicos.
• ALLESSANDRIA ET AL (n=290.727):
Los sujetos vacunados con 2 dosis perdieron el 37% de la esperanza de vida en comparación con la población no vacunada durante el seguimiento.
La retirada inmediata del mercado de las inyecciones de ARNm de COVID-19 es esencial para evitar más pérdidas de vidas entre millones personas que aún están inyectando.
La proteína pico o spike que produce la inyección contra Covid es tóxica
La siguiente sección recopila más de 300 estudios científicos revisados por pares que confirman que la proteína pico o spike es altamente patógena por sí misma; la mayoría de los estudios citados aquí utilizaron proteínas de espiga recombinantes o proteínas de espiga en vectores pseudovirales y produjeron efectos patológicos independientes de la maquinaria viral del SARS-CoV2.
La segunda sección (II. Categorías) organiza la investigación en categorías generales que incluyen tejidos y sistemas orgánicos afectados, mecanismos y evidencia de patología clínica. Debido a que estas áreas se superponen, muchos artículos aparecen más de una vez en la segunda sección.
CATEGORIAS
A. General/Overview (32)
B. ACE2 (19)
C. Amyloid, prion-like properties (12)
D. Autoimmune (7)
E. Blood pressure/hypertension (2)
F. CD147 (13)
G. Cell membrane permeability, barrier dysfunction (13)
H. Cerebral, cerebrovascular, neurologic, blood-brain barrier, cognitive (24)
I. Clinical pathology (22)
J. Clotting, platelets, hemoglobin (30)
K. Cytokines, chemokines, interferon, interleukins (27)
L. Endothelial (25)
M. Gastrointestinal (8)
N. Immune dysfunction (5)
O. Macrophages , monocytes, neutrophils (28)
P. MAPK/NF-kB (10)
Q. Mast cells (3)
R. Microglia (6)
S. Microvascular (8)
T. MIS-C, pediatric (7)
U. Mitochondria / metabolism (9)
V. Myocarditis, cardiac, cardiomyopathy (22)
W. NLRP3 (15)
X. Ocular, ophthalmic, conjunctival (3)
Y. Other cell signaling (16)
Z. PASC, post COVID, long COVID (20)
AA. Pregnancy, fetal, placenta (7)
BB. Pulmonary, respiratory (28)
CC. Renin – Angiotensin-Aldosterone System (3)
DD. Senescence/aging (3)
EE. Stem cells (3)
FF. Syncytia / cell fusion (10)
GG. Therapeutics (37)
HH. Toll-like receptors (TLRs) (15)
A. General/Overview
- Acevedo-Whitehouse K and R Bruno, “Potential health risks of mRNA-based vaccine therapy: A
hypothesis,” Med. Hypotheses 2023, 171: 111015. doi: https://doi.org/10.1016/j.mehy.2023.111015 - Almehdi AM et al., “SARS-CoV-2 Spike Protein: Pathogenesis, Vaccines, and Potential Therapies,”
Infection 2021, 49, 5: 855–876. doi: https://doi.org/10.1007/s15010-021-01677-8 - Baldari CT et al., “Emerging Roles of SARS-CoV-2 Spike-ACE2 in Immune Evasion and Pathogenesis,”
Trends Immunol. 2023, 44, 6. doi: https://doi.org/10.1016/j.it.2023.04.001 - Bansal S et al., “Cutting Edge: Circulating Exosomes with COVID Spike Protein Are Induced by
BNT162b2 (Pfizer-BioNTech) Vaccination prior to Development of Antibodies: A Novel Mechanism for
Immune Activation by mRNA Vaccines,” J. Immunol. 2021, 207, 10: 2405–2410. doi:
https://doi.org/10.4049/jimmunol.2100637 - Bellucci M et al., “Post-SARS-CoV-2 infection and post-vaccine-related neurological complications
share clinical features and the same positivity to anti-ACE2 antibodies,” Front. Immunol. 2024, 15
(Sec. Multiple Sclerosis and Neuroimmunology). doi: https://doi.org/10.3389/fimmu.2024.1398028 - Boros LG et al., “Long-lasting, biochemically modified mRNA, and its frameshifted recombinant
spike proteins in human tissues and circulation after COVID-19 vaccination,” Pharmacol Res
Perspect 2024, 12, 3: e1218. doi: https://doi.org/10.1002/prp2.1218 - Brady M et al., “Spike protein multiorgan tropism suppressed by antibodies targeting SARS-CoV-2,”
Comm. Biol. 2021, 4, 1318. doi: https://doi.org/10.1038/s42003-021-02856-x - Cosentino M and Franca Marino, “Understanding the Pharmacology of COVID- 19 mRNA Vaccines:
Playing Dice with the Spike?” Int. J. Mol. Sci. 2022, 23, 18: 10881. doi:
https://doi.org/10.3390/ijms231810881 - Fertig TE et al., “Beyond the injection site: identifying the cellular targets of mRNA vaccines,” J Cell
Ident 2024, 3, 1. doi: 10.47570/joci.2024.004 - Fertig TE et al., “Vaccine mRNA Can Be Detected in Blood at 15 Days Post
Vaccination,” Biomedicines 2022, 10, 7: 1538. doi: https://doi.org/10.3390/biomedicines10071538 - Gussow AB et al., “Genomic Determinants of Pathogenicity in SARS-CoV-2 and Other Human
Coronaviruses,” PNAS 117, 2020, 26: 15193–15199. doi: https://doi.org/10.1073/pnas.2008176117 - Halma MTJ et al., “Strategies for the Management of Spike Protein-Related Pathology,”
Microorganisms 2023, 11, 5: 1308, doi: https://doi.org/10.3390/microorganisms11051308 - Kent SJ et al., “Blood Distribution of SARS-CoV-2 Lipid Nanoparticle mRNA Vaccine in Humans,” ACS
Nano 2024, 18, 39: 27077-27089. doi: https://doi.org/10.1021/acsnano.4c11652 - Kowarz E et al., “Vaccine-induced COVID-19 mimicry syndrome,” eLife 2022, 11: e74974.
doi: https://doi.org/10.7554/eLife.74974 - Lehmann KJ, “Impact of SARS-CoV-2 Spikes on Safety of Spike-Based COVID-19 Vaccinations,”
Immunome Res. 2024, 20, 2: 1000267. doi: 10.35248/1745-7580.24.20.267 - Lehmann KJ, “Suspected Causes of the Specific Intolerance Profile of Spike-Based Covid-19
Vaccines,” Med. Res. Arch 2024, 12, 9. doi: 10.18103/mra.v12i9.5704 - Lesgard JF et al., “Toxicity of SARS-CoV-2 Spike Protein from the Virus and Produced from COVID-19
mRNA or Adenoviral DNA Vaccines,” Arch Microbiol Immun 2023, 7, 3: 121- 138. doi:
10.26502/ami.936500110 - Letarov AV et al., “Free SARS-CoV-2 Spike Protein S1 Particles May Play a Role in the Pathogenesis of
COVID-19 Infection,” Biochemistry (Moscow) 2021, 86, 257–261. doi:
https://doi.org/10.1134/S0006297921030032 - Nuovo JG et al., “Endothelial Cell Damage Is the Central Part of COVID-19 and a Mouse Model
Induced by Injection of the S1 Subunit of the Spike Protein,” Ann. Diagn. Pathol. 2021, 51, 151682.
doi: https://doi.org/10.1016/j.anndiagpath.2020.151682 - Pallas RM, “Innate and adaptative immune mechanisms of COVID-19 vaccines. Serious adverse
events associated with SARS-CoV-2 vaccination: A systematic review,” Vacunas (English ed.) 2024,
25, 2: 285.e1-285.e94. doi: https://doi.org/10.1016/j.vacune.2024.05.002 - Parry PL et al., “‘Spikeopathy’: COVID-19 Spike Protein Is Pathogenic, from Both Virus and Vaccine
mRNA,” Biomedicine 2023, 11, 8: 2287. doi: https://doi.org/10.3390/biomedicines11082287 - Pateev I et al., “Biodistribution of RNA Vaccines and of Their Products: Evidence from Human and
Animal Studies,” Biomedicines 2024, 12, 1: 59. doi: https://doi.org/10.3390/biomedicines12010059 - Peluso MJ et al., “Plasma-based antigen persistence in the post-acute phase of COVID-19,” Lancet
2024, 24, 6: E345-E347. doi: 10.1016/S1473-3099(24)00211-1 - Rzymski P and Andrzej Fal, “To aspirate or not to aspirate? Considerations for the COVID-19
vaccines,” Pharmacol. Rep 2022, 74: 1223–1227. doi: https://doi.org/10.1007/s43440-022-00361-4 - Saadi F et al., “Spike glycoprotein is central to coronavirus pathogenesis-parallel between m-CoV
and SARS-CoV-2,” Ann Neurosci. 2021, 28 (3-4): 201–218. doi:
https://doi.org/10.1177/09727531211023755 - Sacco K et al., “Immunopathological signatures in multisystem inflammatory syndrome in children
and pediatric COVID-19,” Nat. Med. 2022, 28: 1050-1062. doi: https://doi.org/10.1038/s41591-022-
01724-3 - Scholkmann F and CA May, “COVID-19, post-acute COVID-19 syndrome (PACS, ‘long COVID’) and
post-COVID-19 vaccination syndrome (PCVS, ‘post-COVIDvac-syndrome’): Similarities and
diberences,” Pathol Res Pract. 2023, 246: 154497. doi: https://doi.org/10.1016/j.prp.2023.154497 - Swank Z, et al. “Persistent Circulating Severe Acute Respiratory Syndrome Coronavirus 2 Spike Is
Associated With Post-acute Coronavirus Disease 2019 Sequelae,” Clin. Infect. Dis 2023, 76, 3: e487–
e490. doi: https://doi.org/10.1093/cid/ciac722 - Theoharides TC, “Could SARS-CoV-2 Spike Protein Be Responsible for Long-COVID Syndrome?” Mol.
Neurobiol. 2022, 59, 3: 1850–1861, doi: https://doi.org/10.1007/s12035-021-02696-0 - Theoharides TC and P. Conti, “Be Aware of SARS-CoV-2 Spike Protein: There Is More Than Meets the
Eye,” J Biol Reg Homeostat Agents 2021, 35, 3: 833–838 doi: 10.23812/THEO_EDIT_3_21 - Trougakos IP et al., “Adverse Ebects of COVID-19 mRNA Vaccines: The Spike Hypothesis,” Trends Mol
Med. 2022, 28, 7: 542–554. doi: 10.1016/j.molmed.2022.04.007 - Tyrkalska SD et al., “Diberential proinflammatory activities of spike proteins of SARS-CoV-2 variants
of concern,” Sci. Adv. 2022, 8, 37: eabo0732. doi: 10.1126/sciadv.abo0732
B. ACE2
- Aboudounya MM and RJ Heads, “COVID-19 and Toll-Like Receptor 4 (TLR4): SARS-CoV-2 May Bind
and Activate TLR4 to Increase ACE2 Expression, Facilitating Entry and Causing Hyperinflammation,”
Mediators Inflamm. 2021, 8874339. doi: https://doi.org/10.1155/2021/8874339 - Aksenova AY et al., “The increased amyloidogenicity of Spike RBD and pH-dependent binding to
ACE2 may contribute to the transmissibility and pathogenic properties of SARS-CoV-2 omicron as
suggested by in silico study,” Int J Mol Sci. 2022, 23, 21: 13502. doi:
https://doi.org/10.3390/ijms232113502 - Angeli F et al., “COVID-19, vaccines and deficiency of ACE2 and other angiotensinases. Closing the
loop on the ‘Spike ebect’,” Eur J. Intern. Med. 2022, 103: 23–28. doi: 10.1016/j.ejim.2022.06.015 - Baldari CT et al., “Emerging Roles of SARS-CoV-2 Spike-ACE2 in Immune Evasion and Pathogenesis,”
Trends Immunol. 2023, 44, 6. doi: https://doi.org/10.1016/j.it.2023.04.001 - Bellucci M et al., “Post-SARS-CoV-2 infection and post-vaccine-related neurological complications
share clinical features and the same positivity to anti-ACE2 antibodies,” Front. Immunol. 2024, 15
(Sec. Multiple Sclerosis and Neuroimmunology). doi: https://doi.org/10.3389/fimmu.2024.1398028 - Devaux CA and L. Camoin-Jau, “Molecular mimicry of the viral spike in the SARS-CoV-2 vaccine
possibly triggers transient dysregulation of ACE2, leading to vascular and coagulation dysfunction
similar to SARS-CoV-2 infection,” Viruses 2023, 15, 5: 1045. doi: https://doi.org/10.3390/v15051045 - Gao X et al., “Spike-Mediated ACE2 Down-Regulation Was Involved in the Pathogenesis of SARS-CoV-
2 Infection,” J. Infect. 2022, 85, 4: 418–427. doi: 10.1016/j.jinf.2022.06.030 - Kato Y et al., “TRPC3-Nox2 Protein Complex Formation Increases the Risk of SARS-CoV-2 Spike
Protein-Induced Cardiomyocyte Dysfunction through ACE2 Upregulation,” Int. J. Mol. Sci. 2023, 24, 1: - doi: https://doi.org/10.3390/ijms24010102
- Ken W et al., “Low dose radiation therapy attenuates ACE2 depression and inflammatory cytokines
induction by COVID-19 viral spike protein in human bronchial epithelial cells,” Int J Radiat Biol. 2022,
98, 10: 1532-1541. doi: https://doi.org/10.1080/09553002.2022.2055806 - Lei Y et al., “SARS-CoV-2 Spike Protein Impairs Endothelial Function via Downregulation of ACE 2,”
Circulation Research 2021, 128, 9: 1323–1326. doi:
https://doi.org/10.1161/CIRCRESAHA.121.318902 - Lu J and PD Sun, “High abinity binding of SARS-CoV-2 spike protein enhances ACE2
carboxypeptidase activity,” J. Biol. Chem 2020, 295, 52: p18579-18588. doi:
10.1074/jbc.RA120.015303 - Maeda Y et al., “Diberential Ability of Spike Protein of SARS-CoV-2 Variants to Downregulate ACE2,”
Int. J. Mol. Sci. 2024, 25, 2: 1353. doi: https://doi.org/10.3390/ijms25021353 - Magro N et al., “Disruption of the blood-brain barrier is correlated with spike endocytosis by ACE2 +
endothelia in the CNS microvasculature in fatal COVID-19. Scientific commentary on ‘Detection of
blood-brain barrier disruption in brains of patients with COVID-19, but no evidence of brain
penetration by SARS-CoV-2’,” Acta Neuropathol. 2024, 147, 1: 47. doi:
https://doi.org/10.1007/s00401-023-02681-y - Satta S et al., “An engineered nano-liposome-human ACE2 decoy neutralizes SARS-CoV-2 Spike
protein-induced inflammation in both murine and human macrophages,” Theranostics 2022, 12, 6:
2639–2657. doi: 10.7150/thno.66831 - Sui Y et al., “SARS-CoV-2 Spike Protein Suppresses ACE2 and Type I Interferon Expression in Primary
Cells From Macaque Lung Bronchoalveolar Lavage,” Front. Immunol. 2021, 12. doi:
https://doi.org/10.3389/fimmu.2021.658428 - Tetz G and Victor Tetz, “Prion-Like Domains in Spike Protein of SARS-CoV-2 Diber across Its Variants
and Enable Changes in Abinity to ACE2,” Microorganisms 2025, 10, 2: 280. doi:
https://doi.org/10.3390/microorganisms10020280 - Vargas-Castro R et al., “Calcitriol prevents SARS-CoV spike-induced inflammation in human
trophoblasts through downregulating ACE2 and TMPRSS2 expression,” J Steroid Biochem Mol
Biol 2025, 245: 106625. doi: https://doi.org/10.1016/j.jsbmb.2024.106625 - Youn JY et al., “Therapeutic application of estrogen for COVID-19: Attenuation of SARS-CoV-2 spike
protein and IL-6 stimulated, ACE2-dependent NOX2 activation, ROS production and MCP-1
upregulation in endothelial cells,” Redox Biol. 2021, 46: 102099. doi:
https://doi.org/10.1016/j.redox.2021.102099 - Zhang S et al., “SARS-CoV-2 Binds Platelet ACE2 to Enhance Thrombosis in COVID-19,” J. Hematol.
Oncol. 2020, 13, 120: 120. doi: https://doi.org/10.1186/s13045-020-00954-7
C. Amyloid, prion-like properties
C. Amyloid, prion-like properties
- Aksenova AY et al., “The increased amyloidogenicity of Spike RBD and pH-dependent binding to
ACE2 may contribute to the transmissibility and pathogenic properties of SARS-CoV-2 omicron as
suggested by in silico study,” Int. J. Mol. Sci. 2022, 23, 21: 13502. doi:
https://doi.org/10.3390/ijms232113502 - Cao S et al., “Spike Protein Fragments Promote Alzheimer’s Amyloidogenesis,” ACS Appl. Mater.
Interfaces 2023, 15, 34: 40317-40329. doi: https://doi.org/10.1021/acsami.3c09815 - Freeborn J, “Misfolded Spike Protein Could Explain Complicated COVID-19 Symptoms,” Medical
News Today, May 26, 2022, https://www.medicalnewstoday.com/articles/misfolded-spike-proteincould- explain-complicated-covid-19-symptoms - Idrees D and Vijay Kumar, “SARS-CoV-2 Spike Protein Interactions with Amyloidogenic Proteins:
Potential Clues to Neurodegeneration,” Biochemical and Biophysical Research Communications
2021, 554 : 94–98. doi: https://doi.org/10.1016/j.bbrc.2021.03.100 - Ma G et al., “SARS-CoV-2 Spike protein S2 subunit modulates γ-secretase and enhances amyloid-β
production in COVID-19 neuropathy,” Cell Discov 2022, 8, 99. doi: https://doi.org/10.1038/s41421-
022-00458-3 - Nahalka J, “1-L Transcription of SARS-CoV-2 Spike Protein S1 Subunit,” Int. J. Mol. Sci. 2024, 25, 8: doi: https://doi.org/10.3390/ijms25084440
- Nyström S, “Amyloidogenesis of SARS-CoV-2 Spike Protein,” J. Am. Chem. Soc. 2022, 144, 8945– doi: https://doi.org/10.1021/jacs.2c03925
- Petrlova J et al., “SARS-CoV-2 spike protein aggregation is triggered by bacterial lipopolysaccharide,”
FEBS Lett. 2022, 596:2566–2575. doi: https://doi.org/10.1002/1873-3468.14490 - Petruk G et al., “SARS-CoV-2 spike protein binds to bacterial lipopolysaccharide and boosts
proinflammatory activity,” J. Mol. Cell Biol. 2020, 12: 916-932. doi:
https://doi.org/10.1093/jmcb/mjaa067 - Rong Z et al., “Persistence of spike protein at the skull-meninges-brain axis may contribute to the
neurological sequelae of COVID-19,” Cell Host Microbe 2024, 26: S1931-3128(24)00438-4. doi:
10.1016/j.chom.2024.11.007 - Tetz G and Victor Tetz, “Prion-Like Domains in Spike Protein of SARS-CoV-2 Diber across Its Variants
and Enable Changes in Abinity to ACE2,” Microorganisms 2022, 10, 2: 280, doi:
https://doi.org/10.3390/microorganisms10020280 - Wang J et al., “SARS-CoV-2 Spike Protein S1 Domain Accelerates α-Synuclein Phosphorylation and
Aggregation in Cellular Models of Synucleinopathy,” Mol Neurobiol. 2024, 61, 4: 2446-2458. doi:
https://doi.org/10.1007/s12035-023-03726-9
D. Autoimmune
- Heil M, “Self-DNA driven inflammation in COVID-19 and after mRNA-based vaccination: lessons for
non-COVID-19 pathologies,” Front. Immunol., 2023, 14. doi:
https://doi.org/10.3389/fimmu.2023.1259879 - Kanduc D, “From Anti-SARS-CoV-2 Immune Responses to COVID-19 via Molecular Mimicry,”
Antibodies 2020, 9, 3: 33. doi: https://doi.org/10.3390/antib9030033 - Kanduc D and Y Shoenfeld, “Molecular mimicry between SARS-CoV-2 spike glycoprotein and
mammalian proteomes: implications for the vaccine,” Immunol Res 2020, 68: 310-313. doi:
https://doi.org/10.1007/s12026-020-09152-6 - Nunez-Castilla J et al., “Potential autoimmunity resulting from molecular mimicry between SARSCoV-
2 spike and human proteins,” Viruses 2022, 14, 7: 1415. https://doi.org/10.3390/v14071415 - Rodriguez Y et al., “Autoinflammatory and autoimmune conditions at the crossroad of COVID-19,” J.
Autoimmun. 2020, 114: 102506. doi: https://doi.org/10.1016/j.jaut.2020.102506 - Vojdani A and D Kharrazian, “Potential antigenic cross-reactivity between SARS-CoV-2 and human
tissue with a possible link to an increase in autoimmune diseases,” Clin Immunol. 2020, 217:doi: https://doi.org/10.1016/j.clim.2020.108480 - Vojdani A et al., “Reaction of Human Monoclonal Antibodies to SARS-CoV-2 Proteins With Tissue
Antigens: Implications for Autoimmune Diseases,” Front. Immunol. 2021, 11 (Sec. Autoimmune and
Autoinflammatory Disorders). doi: https://doi.org/10.3389/fimmu.2020.617089
E. Blood pressure/hypertension
- Angeli F et al., “The spike ebect of acute respiratory syndrome coronavirus 2 and coronavirus disease
2019 vaccines on blood pressure,” Eur J Intern Med. 2023, 109: 12-21. doi:
10.1016/j.ejim.2022.12.004 - Sun Q et al., “SARS-coV-2 spike protein S1 exposure increases susceptibility to angiotensin IIinduced
hypertension in rats by promoting central neuroinflammation and oxidative
stress,” Neurochem. Res. 2023, 48, 3016–3026. doi: https://doi.org/10.1007/s11064-023-03949-1
F. CD147
- Avolio E et al., “The SARS-CoV-2 Spike Protein Disrupts Human Cardiac Pericytes Function through
CD147 Receptor-Mediated Signalling: A Potential Non-infective Mechanism of COVID-19
Microvascular Disease,” Clin. Sci. 2021, 135, 24: 2667–2689. doi:
https://doi.org/10.1042/CS20210735 - Loh D, “The potential of melatonin in the prevention and attenuation of oxidative hemolysis and
myocardial injury from cd147 SARS-CoV-2 spike protein receptor binding,” Melatonin Research 2020,
3, 3: 380-416. doi: https://doi.org/10.32794/mr11250069 - Maugeri N et al., “Unconventional CD147-Dependent Platelet Activation Elicited by SARS-CoV-2 in
COVID-19,” J. Thromb. Haemost. 2021, 20, 2: 434–448. doi: https://doi.org/10.1111/jth.15575
G. Cell membrane permeability, barrier dysfunction
- Asandei A et al., “Non-Receptor-Mediated Lipid Membrane Permeabilization by the SARS-CoV-2
Spike Protein S1 Subunit,” ACS Appl. Mater. Interfaces 2020, 12, 50: 55649–55658. doi:
https://doi.org/10.1021/acsami.0c17044 - Biancatelli RMLC, et al. “The SARS-CoV-2 spike protein subunit S1 induces COVID-19-like acute lung
injury in Kappa18-hACE2 transgenic mice and barrier dysfunction in human endothelial cells,” Am. J.
Physiol. Lung Cell. Mol. Physiol. 2021, 321: L477–L484. doi:
https://doi.org/10.1152/ajplung.00223.2021 - Biering SB et al., “SARS-CoV-2 Spike Triggers Barrier Dysfunction and Vascular Leak via Integrins and
TGF-β Signaling,” Nat. Commun. 2022, 13: 7630. doi: https://doi.org/10.1038/s41467-022-34910-5 - Buzhdygan TP et al., “The SARS-CoV-2 Spike Protein Alters Barrier Function in 2D Static and 3D
Microfluidic in-Vitro Models of the Human Blood-Brain Barrier,” Neurobiol. Dis. 2020, 146: 105131.
doi: https://doi.org/10.1016/j.nbd.2020.105131 - Chaves JCS et al., “Diberential Cytokine Responses of APOE3 and APOE4 Blood–brain Barrier Cell
Types to SARS-CoV-2 Spike Proteins,” J. Neuroimmune Pharmacol. 2024, 19, 22. doi:
https://doi.org/10.1007/s11481-024-10127-9 - Correa Y et al., “SARS-CoV-2 spike protein removes lipids from model membranes and interferes with the capacity of high-density lipoprotein to exchange lipids,” J. Colloid Interface Sci. 2021, 602: 732- doi: https://doi.org/10.1016/j.jcis.2021.06.056
- DeOre BJ et al., “SARS-CoV-2 Spike Protein Disrupts Blood-Brain Barrier Integrity via RhoA
Activation,” J Neuroimmune Pharmacol. 2021, 16, 4:722-728. Doi: https://doi.org/10.1007/s11481-
021-10029-0 - Guo Y and V Kanamarlapudi, “Molecular Analysis of SARS-CoV-2 Spike Protein-Induced Endothelial
Cell Permeability and vWF Secretion,” Int. J. Mol. Sci. 2023, 24, 6: 5664. doi:
https://doi.org/10.3390/ijms24065664 - Luchini A et al., “Lipid bilayer degradation induced by SARS-CoV-2 spike protein as revealed by
neutron reflectometry,” Sci. Rep. 2021, 11: 14867. doi: https://doi.org/10.1038/s41598-021-93996-x - Luo Y et al., “SARS-Cov-2 spike induces intestinal barrier dysfunction through the interaction
between CEACAM5 and Galectin-9,” Front. Immunol. 2024, 15. doi:
https://doi.org/10.3389/fimmu.2024.1303356 - Magro N et al., “Disruption of the blood-brain barrier is correlated with spike endocytosis by ACE2 +
endothelia in the CNS microvasculature in fatal COVID-19. Scientific commentary on ‘Detection of
blood-brain barrier disruption in brains of patients with COVID-19, but no evidence of brain
penetration by SARS-CoV-2’,” Acta Neuropathol. 2024, 147, 1: 47. doi:
https://doi.org/10.1007/s00401-023-02681-y - Raghavan S et al., “SARS-CoV-2 Spike Protein Induces Degradation of Junctional Proteins That
Maintain Endothelial Barrier Integrity,” Front. Cardiovasc. Med. 2021, 8, 687783. doi:
https://doi.org/10.3389/fcvm.2021.687783 - Ruben ML et al., “The SARS-CoV-2 spike protein subunit S1 induces COVID-19-like acute lung injury
in Κ18-hACE2 transgenic mice and barrier dysfunction in human endothelial cells,” Am J Physiol Lung
Cell Mol Physiol. 2021, 321, 2: L477-L484. doi: https://doi.org/10.1152/ajplung.00223.2021
H. Cerebral, cerebrovascular, neurologic, blood-brain barrier, cognitive
- Bellucci M et al., “Post-SARS-CoV-2 infection and post-vaccine-related neurological complications
share clinical features and the same positivity to anti-ACE2 antibodies,” Front. Immunol. 2024, 15
(Sec. Multiple Sclerosis and Neuroimmunology). doi: https://doi.org/10.3389/fimmu.2024.1398028 - Burnett FN et al., “SARS-CoV-2 Spike Protein Intensifies Cerebrovascular Complications in Diabetic
hACE2 Mice through RAAS and TLR Signaling Activation,” Int. J. Mol. Sci. 2023, 24, 22: 16394.
doi: https://doi.org/10.3390/ijms242216394 - Choi JY et al., “SARS-CoV-2 spike S1 subunit protein-mediated increase of beta-secretase 1 (BACE1)
impairs human brain vessel cells,” Biochem. Biophys. Res. Commun. 2022, 625, 20: 66-71.
doi: https://doi.org/10.1016/j.bbrc.2022.07.113 - Clough E et al., “Mitochondrial Dynamics in SARS-COV2 Spike Protein Treated Human Microglia:
Implications for Neuro-COVID,” J. Neuroimmune Pharmacol. 2021, 4, 16: 770–784. doi:
https://doi.org/10.1007/s11481-021-10015-6 - Coly M, et al., “Subacute monomelic radiculoplexus neuropathy following Comirnaty(c) (Pfizer-
BioNTech COVID-19) vaccination: A case report,” Revue Neurologique 2023, 179, 6: 636-639. doi:
https://doi.org/10.1016/j.neurol.2023.02.063 - DeOre BJ et al., “SARS-CoV-2 Spike Protein Disrupts Blood-Brain Barrier Integrity via RhoA
Activation,” J Neuroimmune Pharmacol. 2021, 16, 4: 722-728. Doi: https://doi.org/10.1007/s11481-
021-10029-0 - Erdogan MA, “Prenatal SARS-CoV-2 Spike Protein Exposure Induces Autism-Like Neurobehavioral
Changes in Male Neonatal Rats,” J Neuroimmune Pharmacol. 2023, 18, 4: 573-591. doi:
10.1007/s11481-023-10089-4 - Erickson MA et al., “Blood-brain barrier penetration of non-replicating SARS-CoV-2 and S1 variants of
concern induce neuroinflammation which is accentuated in a mouse model of Alzheimer’s disease,”
Brain Behav Immun 2023, 109: 251-268. doi: https://doi.org/10.1016/j.bbi.2023.01.010 - Fontes-Dantas FL, “SARS-CoV-2 Spike Protein Induces TLR4-Mediated Long- Term Cognitive
Dysfunction Recapitulating Post-COVID-19 Syndrome in Mice,” Cell Reports 2023, 42, 3: 112189. doi:
https://doi.org/10.1016/j.celrep.2023.112189 - Frank MG et al., “Exploring the immunogenic properties of SARS-CoV-2 structural proteins:
PAMP:TLR signaling in the mediation of the neuroinflammatory and neurologic sequelae of COVID-
19,” Brain Behav Immun 2023, 111. doi: https://doi.org/10.1016/j.bbi.2023.04.009 - Frank MG et al., “SARS-CoV-2 S1 subunit produces a protracted priming of the neuroinflammatory,
physiological, and behavioral responses to a remote immune challenge: A role for corticosteroids,”
Brain Behav. Immun. 2024, 121: 87-103. doi: https://doi.org/10.1016/j.bbi.2024.07.034 - Heath SP et al., “SARS-CoV-2 Spike Protein Exacerbates Thromboembolic Cerebrovascular
Complications in Humanized ACE2 Mouse Model,” Transl Stroke Res. 2024. doi:
https://doi.org/10.1007/s12975-024-01301-5 - Khaddaj-Mallat R et al., “SARS-CoV-2 deregulates the vascular and immune functions of brain
pericytes via Spike protein,” Neurobiol. Dis. 2021, 161, 105561. doi:
https://doi.org/10.1016/j.nbd.2021.105561 - Kim ES et al., “Spike Proteins of SARS-CoV-2 Induce Pathological Changes in Molecular Delivery and
Metabolic Function in the Brain Endothelial Cells,” Viruses 2021, 13, 10: 2021. doi:
https://doi.org/10.3390/v13102021 - Lykhmus O et al., “Immunization with 674–685 fragment of SARS-Cov-2 spike protein induces
neuroinflammation and impairs episodic memory of mice,” Biochem. Biophys. Res.
Commun. 2022, 622: 57–63. doi: https://doi.org/10.1016/j.bbrc.2022.07.016 - Magro N et al., “Disruption of the blood-brain barrier is correlated with spike endocytosis by ACE2 +
endothelia in the CNS microvasculature in fatal COVID-19. Scientific commentary on ‘Detection of
blood-brain barrier disruption in brains of patients with COVID-19, but no evidence of brain
penetration by SARS-CoV-2’,” Acta Neuropathol. 2024, 147, 1: 47. doi:
https://doi.org/10.1007/s00401-023-02681-y - Oh J et al., “SARS-CoV-2 Spike Protein Induces Cognitive Deficit and Anxiety-Like Behavior in Mouse
via Non-cell Autonomous Hippocampal Neuronal Death,” Scientific Reports 2022, 12, 5496. doi:
https://doi.org/10.1038/s41598-022-09410-7 - Oka N et al., “SARS-CoV-2 S1 protein causes brain inflammation by reducing intracerebral
acetylcholine production,” iScience 2023, 26, 6: 106954. doi: 10.1016/j.isci.2023.106954 - Peluso MJ et al., “SARS-CoV-2 and mitochondrial proteins in neural-derived exosomes of COVID-19,”
Ann Neurol 2022, 91, 6: 772-781. doi: https://doi.org/10.1002/ana.26350 - Petrovszki D et al., “Penetration of the SARS-CoV-2 Spike Protein across the Blood-Brain Barrier, as
Revealed by a Combination of a Human Cell Culture Model System and Optical
Biosensing,” Biomedicines 2022, 10, 1: 188. doi: https://doi.org/10.3390/biomedicines10010188 - Rong Z et al., “Persistence of spike protein at the skull-meninges-brain axis may contribute to the
neurological sequelae of COVID-19,” Cell Host Microbe 2024, 26: S1931-3128(24)00438-4. doi:
10.1016/j.chom.2024.11.007 - Suprewicz L et al., “Blood-brain barrier function in response to SARS-CoV-2 and its spike
protein,” Neurol. Neurochir Pol. 2023, 57: 14–25. doi: 10.5603/PJNNS.a2023.0014 - Suprewicz L et al., “Recombinant human plasma gelsolin reverses increased permeability of the
blood-brain barrier induced by the spike protein of the SARS-CoV-2 virus,” J Neuroinflammation 2022,
19, 1: 282, doi: https://doi.org/10.1186/s12974-022-02642-4 - Wu ML et al., “Mast cell activation triggered by SARS-CoV-2 causes inflammation in brain
microvascular endothelial cells and microglia,” Front. Cell. Infect. Microbiol., 2024, 14. doi:
https://doi.org/10.3389/fcimb.2024.1358873
I. Clinical pathology
- Baumeier C et al., “Intramyocardial Inflammation after COVID-19 Vaccination: An Endomyocardial
Biopsy-Proven Case Series,” Int. J. Mol. Sci. 2022, 23: 6940. doi:
https://doi.org/10.3390/ijms23136940 - Burkhardt A, “Pathology Conference: Vaccine-Induced Spike Protein Production in the Brain, Organs
etc., now Proven,” Report24.news. 2022, https://report24.news/pathologie-konferenzimpfinduzierte-
spike-produktion-in-gehirn-u-a-organen-nun-erwiesen/ - Craddock V et al., “Persistent circulation of soluble and extracellular vesicle-linked Spike protein in
individuals with postacute sequelae of COVID-19,” J Med. Virol. 2023, 95, 2: e28568. doi:
https://doi.org/10.1002/jmv.28568 - De Michele M et al., “Evidence of SARS-CoV-2 Spike Protein on Retrieved Thrombi from COVID-19
Patients,” J. Hematol. Oncol. 2022, 15, 108. doi: https://doi.org/10.1186/s13045-022-01329-w - De Sousa PMB et al., “Fatal Myocarditis following COVID-19 mRNA Immunization: A Case Report and
Diberential Diagnosis Review,” Vaccines 2024, 12, 2: 194.
doi: https://doi.org/10.3390/vaccines12020194 - Gamblicher T et al., “SARS-CoV-2 spike protein is present in both endothelial and eccrine cells of a
chilblain-like skin lesion,” J Eur Acad Dermatol Venereol. 2020, 1, 10: e187-e189. doi:
https://doi.org/10.1111/jdv.16970 - Gawaz A et al., “SARS-CoV-2–Induced Vasculitic Skin Lesions Are Associated with Massive Spike
Protein Depositions in Autophagosomes,” J Invest Dermatol. 2024, 144, 2: 369-377.e4. doi:
https://doi.org/10.1016/j.jid.2023.07.018 - Hulscher N et al., “Autopsy findings in cases of fatal COVID-19 vaccine-induced myocarditis,” ESC
Heart Failure 2024. doi: https://doi.org/10.1002/ehf2.14680 - Ko CJ et al., “Discordant anti-SARS-CoV-2 spike protein and RNA staining in cutaneous perniotic
lesions suggests endothelial deposition of cleaved spike protein,” J. Cutan Pathol 2021, 48, 1: 47– - doi: https://doi.org/10.1111/cup.13866
- Magen E et al., “Clinical and Molecular Characterization of a Rare Case of BNT162b2 mRNA COVID-
19 Vaccine-Associated Myositis,” Vaccines 2022, 10: 1135. doi:
https://doi.org/10.3390/vaccines10071135 - Magro N et al., “Disruption of the blood-brain barrier is correlated with spike endocytosis by ACE2 +
endothelia in the CNS microvasculature in fatal COVID-19. Scientific commentary on ‘Detection of
blood-brain barrier disruption in brains of patients with COVID-19, but no evidence of brain
penetration by SARS-CoV-2’,” Acta Neuropathol. 2024, 147, 1: 47. doi:
https://doi.org/10.1007/s00401-023-02681-y - Matschke J et al., “Neuropathology of patients with COVID-19 in Germany: a post-mortem case
series,” Lancet Neurol. 2020, 19, 11: 919-929. doi: 10.1016/S1474-4422(20)30308-2 - Mörz M, “A Case Report: Multifocal Necrotizing Encephalitis and Myocarditis after BNT162b2 mRNA
Vaccination against COVID-19,” Vaccines 2022, 10, 10: 1651. doi:
https://doi.org/10.3390/vaccines10101651 - Rong Z et al., “Persistence of spike protein at the skull-meninges-brain axis may contribute to the
neurological sequelae of COVID-19,” Cell Host Microbe 2024, 26: S1931-3128(24)00438-4. doi:
10.1016/j.chom.2024.11.007 - Sano H et al., “A case of persistent, confluent maculopapular erythema following a COVID-19 mRNA
vaccination is possibly associated with the intralesional spike protein expressed by vascular
endothelial cells and eccrine glands in the deep dermis,” J. Dermatol. 2023, 50: 1208–1212. doi:
https://doi.org/10.1111/1346-8138.16816 - Sano S et al., “SARS-CoV-2 spike protein found in the acrosyringium and eccrine gland of repetitive
miliaria-like lesions in a woman following mRNA vaccination,” J. Dermatol. 2024, 51, 9: e293-e295.
doi: https://doi.org/10.1111/1346-8138.17204 - Santonja C et al., “COVID-19 chilblain-like lesion: immunohistochemical demonstration of SARSCoV-
2 spike protein in blood vessel endothelium and sweat gland epithelium in a polymerase chain
reaction-negative patient,” Br J Dermatol. 2020, 183, 4: 778-780. doi:
https://doi.org/10.1111/bjd.19338 - Soares CD et al., “Oral vesiculobullous lesions as an early sign of COVID-19: immunohistochemical
detection of SARS-CoV-2 spike protein,” Br. J. Dermatol. 2021, 184, 1: e6.
doi: https://doi.org/10.1111/bjd.19569 - Wu H et al., “Molecular evidence suggesting the persistence of residual SARS-CoV-2 and immune
responses in the placentas of pregnant patients recovered from COVID-19,” Cell Prolif. 2021, 54, 9:
e13091. doi: https://doi.org/10.1111/cpr.13091 - Yamamoto M et al., “Persistent varicella zoster virus infection following mRNA COVID-19 vaccination
was associated with the presence of encoded spike protein in the lesion,” J. Cutan Immunol. Allergy.
2022: 1-6. doi: https://doi.org/10.1002/cia2.12278 - Yonker LM et al., “Circulating Spike Protein Detected in Post–COVID-19 mRNA Vaccine Myocarditis,”
Circulation 2023, 147, 11. doi: https://doi.org/10.1161/CIRCULATIONAHA.122.061025 - Yonker LM et al., “Multisystem inflammatory syndrome in children is driven by zonulin-dependent
loss of gut mucosal barrier,” J Clin Invest. 2021, 131, 14: e149633. doi:
https://doi.org/10.1172/JCI149633
J. Clotting, platelets, hemoglobin
- Al-Kuraishy HM et al., “Changes in the Blood Viscosity in Patients With SARS-CoV-2 Infection,” Front.
Med. 2022, 9: 876017. doi: 10.3389/fmed.2022.876017 - Al-Kuraishy HM et al., “Hemolytic anemia in COVID-19,” Ann. Hematol. 2022, 101: 1887–1895. doi:
10.1007/s00277-022-04907-7 - Appelbaum K et al., “SARS-CoV-2 spike-dependent platelet activation in COVID-19 vaccine-induced
thrombocytopenia,” Blood Adv. 2022, 6: 2250–2253. doi: 10.1182/bloodadvances.2021005050 - Boschi C et al., “SARS-CoV-2 Spike Protein Induces Hemagglutination: Implications for COVID-19
Morbidities and Therapeutics and for Vaccine Adverse Ebects,” Int. J. Biol. Macromol. 2022, 23, 24:
15480, doi: https://doi.org/10.3390/ijms232415480 - Bye AP et al., “Aberrant glycosylation of anti-SARS-CoV-2 spike IgG is a prothrombotic stimulus for
platelets,” Blood 2021, 138, 6: 1481–9. doi: https://doi.org/10.1182/blood.2021011871 - Carnevale R et al., “Toll-Like Receptor 4-Dependent Platelet-Related Thrombosis in SARS-CoV-2
Infection,” Circ. Res. 2023, 132, 3: 290– 305, doi: https://doi.org/10.1161/CIRCRESAHA.122.321541 - Cossenza LC et al., “Inhibitory ebects of SARS-CoV-2 spike protein and BNT162b2 vaccine on
erythropoietin-induced globin gene expression in erythroid precursor cells from patients with β-
thalassemia,” Exp. Hematol. 2024, 129, 104128. doi: https://doi.org/10.1016/j.exphem.2023.11.002 - De Michele M et al., “Vaccine-induced immune thrombotic thrombocytopenia: a possible
pathogenic role of ChAdOx1 nCoV-19 vaccine-encoded soluble SARS-CoV-2 spike protein,”
Haematologica 2022, 107, 7: 1687–92. https://doi.org/10.3324/haematol.2021.280180 - Grobbelaar LM et al., “SARS-CoV-2 Spike Protein S1 Induces Fibrin(ogen) Resistant to Fibrinolysis:
Implications for Microclot Formation in COVID-19,” Biosicence Reports 2021, 41, 8: BSR20210611.
doi: https://doi.org/10.1042/BSR20210611 - Heath SP et al., “SARS-CoV-2 Spike Protein Exacerbates Thromboembolic Cerebrovascular
Complications in Humanized ACE2 Mouse Model,” Transl Stroke Res. 2024. doi:
https://doi.org/10.1007/s12975-024-01301-5 - Iba T and JH Levy, “The roles of platelets in COVID-19-associated coagulopathy and vaccine-induced
immune thrombotic thrombocytopenia,” Trends Cardiovasc Med. 2022, 32, 1: 1-9. doi:
https://doi.org/10.1016/j.tcm.2021.08.012 - Huynh TV et al., “Spike Protein of SARS-CoV-2 Activates Cardiac Fibrogenesis through NLRP3
Inflammasomes and NF-κB Signaling,” Cells 2024, 13, 16: 1331.
doi: https://doi.org/10.3390/cells13161331 - Iba T and JH Levy, “The roles of platelets in COVID-19-associated coagulopathy and vaccine-induced
immune thrombotic thrombocytopenia,” Trends Cardiovasc Med. 2022, 32, 1: 1-9. doi:
https://doi.org/10.1016/j.tcm.2021.08.012 - Jana S et al., “Cell-free hemoglobin does not attenuate the ebects of SARS-CoV-2 spike protein S1
subunit in pulmonary endothelial cells,” Int. J. Mol. Sci. 2021, 22, 16: 9041. doi:
https://doi.org/10.3390/ijms22169041 - Kim SY et al., “Characterization of heparin and severe acute respiratory syndrome-related
coronavirus 2 (SARS-CoV-2) spike glycoprotein binding interactions,” Antivir Res. 2020, 181: 104873.
doi: https://doi.org/10.1016/j.antiviral.2020.104873 - Kircheis R, “Coagulopathies after Vaccination against SARS-CoV-2 May Be Derived from a Combined
Ebect of SARS-CoV-2 Spike Protein and Adenovirus Vector-Triggered Signaling Pathways,” Int. J. Mol.
Sci. 2021, 22, 19: 10791. https://doi.org/10.3390/ijms221910791 - Kuhn CC et al. “Direct Cryo-ET observation of platelet deformation induced by SARS-CoV-2 spike
protein,” Nat. Commun. 2023, 14, 620. doi: https://doi.org/10.1038/s41467-023-36279-5 - Li T et al., “Platelets Mediate Inflammatory Monocyte Activation by SARS-CoV-2 Spike Protein,” J.
Clin. Invest. 2022, 132, 4: e150101. doi: 10.1172/JCI150101 - Maugeri N et al., “Unconventional CD147-Dependent Platelet Activation Elicited by SARS-CoV-2 in
COVID-19,” J. Thromb. Haemost. 2021, 20, 2: 434–448, doi: https://doi.org/10.1111/jth.15575 - Passariello M et al., “Interactions of Spike-RBD of SARS-CoV-2 and Platelet Factor 4: New Insights in
the Etiopathogenesis of Thrombosis,” Int. J. Mol. Sci. 2021, 22, 16: 8562.
doi: https://doi.org/10.3390/ijms22168562 - Perico L et al., “SARS-CoV-2 Spike Protein 1 Activates Microvascular Endothelial Cells and
Complement System Leading to Platelet Aggregation,” Front. Immunol. 2022, 13, 827146. doi:
https://doi.org/10.3389/fimmu.2022.827146 - Roytenberg R et al., “Thymidine phosphorylase mediates SARS-CoV-2 spike protein enhanced
thrombosis in K18-hACE2TG mice,” Thromb. Res. 2024, 244, 8: 109195. doi:
10.1016/j.thromres.2024.109195 - Russo A, et al., “Implication of COVID-19 on Erythrocytes Functionality: Red Blood Cell Biochemical
Implications and Morpho-Functional Aspects,” Int. J. Mol. Sci. 2022, 23, 4: 2171.
doi: https://doi.org/10.3390/ijms23042171 - Ryu JK et al., “Fibrin drives thromboinflammation and neuropathology in COVID-19,” Nature 2024,
633: 905-913. doi: https://doi.org/10.1038/s41586-024-07873-4 - Scheim, DE. “A Deadly Embrace: Hemagglutination Mediated by SARS-CoV-2 Spike Protein at its 22
N-Glycosylation Sites, Red Blood Cell Surface Sialoglycoproteins, and Antibody,” Int. J. Mol.
Sci. 2022, 23, 5: 2558. doi: https://doi.org/10.3390/ijms23052558 - Scheim DE et al., “Sialylated Glycan Bindings from SARS-CoV-2 Spike Protein to Blood and
Endothelial Cells Govern the Severe Morbidities of COVID-19,” Int. J. Mol. Sci. 2023, 24, 23: 17039.
doi: https://doi.org/10.3390/ijms242317039 - Sirsendu J et al., “Cell-Free Hemoglobin Does Not Attenuate the Ebects of SARS-CoV-2 Spike Protein
S1 Subunit in Pulmonary Endothelial Cells,” Int. J. Mol. Sci., 2021, 22, 16: 9041. doi:
https://doi.org/10.3390/ijms22169041 - Zhang S et al., “SARS-CoV-2 Binds Platelet ACE2 to Enhance Thrombosis in COVID-19,” J. Hematol.
Oncol. 2020, 13, 120: 120. doi: https://doi.org/10.1186/s13045-020-00954-7 - Zhang Z et al., “SARS-CoV-2 spike protein dictates syncytium-mediated lymphocyte
elimination,” Cell Death Di^er. 2021, 28, 2765–2777. doi: https://doi.org/10.1038/s41418-021-00782-
3 - Zheng Y et al., “SARS-CoV-2 Spike Protein Causes Blood Coagulation and Thrombosis by Competitive Binding to Heparan Sulfate,” Int. J. Biol. Macromol. 2021, 193: 1124–1129. doi:
https://doi.org/10.1016/j.ijbiomac.2021.10.112
K. Cytokines, chemokines, inteferon, interleukins
- Ao Z et al., “SARS-CoV-2 Delta spike protein enhances the viral fusogenicity and inflammatory
cytokine production,” iScience 2022, 25, 8: 104759. doi: 10.1016/j.isci.2022.104759 - Chaves JCS et al., “Diberential Cytokine Responses of APOE3 and APOE4 Blood–brain Barrier Cell
Types to SARS-CoV-2 Spike Proteins,” J. Neuroimmune Pharmacol. 2024, 19, 22. doi:
https://doi.org/10.1007/s11481-024-10127-9 - Chittasupho C et al., “Targeting spike glycoprotein S1 mediated by NLRP3 inflammasome machinery
and the cytokine releases in A549 lung epithelial cells by nanocurcumin,” Pharmaceuticals (Basel)
2023, 16, 6: 862. doi: https://doi.org/10.3390/ph16060862 - Das T et al., “N-glycosylation of the SARS-CoV-2 spike protein at Asn331 and Asn343 is involved in
spike-ACE2 binding, virus entry, and regulation of IL-6,” Microbiol. Immunol. 2024, 68, 5: 165-178.
doi: https://doi.org/10.1111/1348-0421.13121 - Duarte C, “Age-dependent ebects of the recombinant spike protein/SARS-CoV-2 on the M-CSF- and
IL-34-diberentiated macrophages in vitro,” Biochem. Biophys. Res. Commun. 2021, 546: 97–102. doi:
https://doi.org/10.1016/j.bbrc.2021.01.104 - Forsyth CB et al., “The SARS-CoV-2 S1 spike protein promotes MAPK and NF-kB activation in human
lung cells and inflammatory cytokine production in human lung and intestinal epithelial
cells,” Microorganisms 2022, 10, 10: 1996. doi: https://doi.org/10.3390/microorganisms10101996 - Freitas RS et al., “SARS-CoV-2 Spike antagonizes innate antiviral immunity by targeting interferon
regulatory factor 3,” Front Cell Infect Microbiol. 2021, 11: 789462. doi:
https://doi.org/10.3389/fcimb.2021.789462 - Gasparello J et al., “Sulforaphane inhibits the expression of interleukin-6 and interleukin-8 induced in
bronchial epithelial IB3-1 cells by exposure to the SARS-CoV-2 Spike protein,” Phytomedicine 2021,
87: 153583. doi: https://doi.org/10.1016/j.phymed.2021.153583 - Ghazanfari D et al., “Mechanistic insights into SARS-CoV-2 spike protein induction of the chemokine
CXCL10,” Sci. Rep. 2024, 14: 11179. doi: https://doi.org/10.1038/s41598-024-61906-6 - Gracie NP et al., “Cellular signalling by SARS-CoV-2 spike protein,” Microbiology Australia 2024, 45, 1:
13-17. doi: https://doi.org/10.1071/MA24005 - Gu T et al., “Cytokine Signature Induced by SARS-CoV-2 Spike Protein in a Mouse Model,” Front.
Immunol., 2021 (Sec. Inflammation). doi: https://doi.org/10.3389/fimmu.2020.621441 - Jugler C et al, “SARS-CoV-2 Spike Protein-Induced Interleukin 6 Signaling Is Blocked by a Plant-
Produced Anti-Interleukin 6 Receptor Monoclonal Antibody,” Vaccines 2021, 9, 11:https://doi.org/10.3390/vaccines9111365 - Liang S et al., “SARS-CoV-2 spike protein induces IL-18-mediated cardiopulmonary inflammation via
reduced mitophagy,” Signal Transduct Target Ther 2023, 8, 103. doi: https://doi.org/10.1038/s41392-
023-01368-w - Liu T et al., “RS-5645 attenuates inflammatory cytokine storm induced by SARS-CoV-2 spike protein
and LPS by modulating pulmonary microbiota,” Int. J. Biol. Sci. 2021, 17, 13: 3305–3319.
doi: 10.7150/ijbs.63329 - Liu X et al., “SARS-CoV-2 spike protein-induced cell fusion activates the cGAS-STING pathway and
the interferon response,” Sci Signal. 2022, 15, 729: eabg8744. doi: 10.1126/scisignal.abg8744 - Niu C et al., “SARS-CoV-2 spike protein induces the cytokine release syndrome by stimulating T cells
to produce more IL-2,” Front. Immunol. 2024, 15: 1444643. doi:
https://doi.org/10.3389/fimmu.2024.1444643 - Norris B et al., “Evaluation of Glutathione in Spike Protein of SARS-CoV-2 Induced
Immunothrombosis and Cytokine Dysregulation,” Antioxidants 2024, 13, 3: 271.
doi: https://doi.org/10.3390/antiox13030271 - Olajide OA et al., “Induction of Exaggerated Cytokine Production in Human Peripheral Blood
Mononuclear Cells by a Recombinant SARS-CoV-2 Spike Glycoprotein S1 and Its Inhibition by
Dexamethasone,” Inflammation 2021, 44: 1865–1877. doi: https://doi.org/10.1007/s10753-021-
01464-5 - Park YJ et al., “D-dimer and CoV-2 spike-immune complexes contribute to the production of PGE2
and proinflammatory cytokines in monocytes,” PLoS Pathog., 2022, 18, 4: e1010468. doi:
https://doi.org/10.1371/journal.ppat.1010468 - Patra T et al., “SARS-CoV-2 spike protein promotes IL-6 trans-signaling by activation of angiotensin II
receptor signaling in epithelial cells,” PLoS Pathog. 2020, 16: e1009128. doi:
https://doi.org/10.1371/journal.ppat.1009128 - Samsudin S et al., “SARS-CoV-2 spike protein as a bacterial lipopolysaccharide delivery system in an
overzealous inflammatory cascade,” J. Mol. Biol. 2022, 14, 9: mjac058. doi:
https://doi.org/10.1093/jmcb/mjac058 - Schroeder JT and AP Bieneman, “The S1 Subunit of the SARS-CoV-2 Spike protein activates human
monocytes to produce cytokines linked to COVID-19: relevance to galectin-3,” Front Immunol. 2022,
13: 831763. doi: https://doi.org/10.3389/fimmu.2022.831763 - Sharma VK et al., “Nanocurcumin Potently Inhibits SARS-CoV-2 Spike Protein-Induced Cytokine
Storm by Deactivation of MAPK/NF-κB Signaling in Epithelial Cells,” ACS Appl. Bio Mater. 2022, 5, 2:
483–491. doi: https://doi.org/10.1021/acsabm.1c00874 - Sui Y et al., “SARS-CoV-2 Spike Protein Suppresses ACE2 and Type I Interferon Expression in Primary
Cells From Macaque Lung Bronchoalveolar Lavage,” Front. Immunol. 2021, 12. doi:
https://doi.org/10.3389/fimmu.2021.658428 - Youn JY et al., “Therapeutic application of estrogen for COVID-19: Attenuation of SARS-CoV-2 spike
protein and IL-6 stimulated, ACE2-dependent NOX2 activation, ROS production and MCP-1
upregulation in endothelial cells,” Redox Biol. 2021, 46: 102099. doi:
https://doi.org/10.1016/j.redox.2021.102099 - Zhang Q et al., “Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) membrane (M) and
spike (S) proteins antagonize host type i interferon response,” Front Cell Infect Microbiol 2021, 11: doi: https://doi.org/10.3389/fcimb.2021.766922 - Zhang RG et al., “SARS-CoV-2 spike protein receptor binding domain promotes IL-6 and IL-8 release
via ATP/P2Y2 and ERK1/2 signaling pathways in human bronchial epithelia,” Mol. Immunol. 2024, 167: 53-61. doi: https://doi.org/10.1016/j.molimm.2024.02.005
L. Endothelial
- Bhargavan B and GD Kanmogne, “SARS-CoV-2 spike proteins and cell–cell communication inhibits
TFPI and induces thrombogenic factors in human lung microvascular endothelial cells and
neutrophils: implications for COVID-19 coagulopathy pathogenesis,” Int. J. Mol. Sci. 2022, 23, 18:doi: https://doi.org/10.3390/ijms231810436 - Biancatelli RMLC, et al. “The SARS-CoV-2 spike protein subunit S1 induces COVID-19-like acute lung
injury in Kappa18-hACE2 transgenic mice and barrier dysfunction in human endothelial cells,” Am. J.
Physiol. Lung Cell. Mol. Physiol. 2021, 321: L477–L484. doi:
https://doi.org/10.1152/ajplung.00223.2021 - Gamblicher T et al., “SARS-CoV-2 spike protein is present in both endothelial and eccrine cells of a
chilblain-like skin lesion,” J Eur Acad Dermatol Venereol. 2020, 1, 10: e187-e189. doi:
https://doi.org/10.1111/jdv.16970 - Guo Y and V Kanamarlapudi, “Molecular Analysis of SARS-CoV-2 Spike Protein-Induced Endothelial
Cell Permeability and vWF Secretion,” Int. J. Mol. Sci. 2023, 24, 6: 5664.
doi: https://doi.org/10.3390/ijms24065664 - Jana S et al., “Cell-free hemoglobin does not attenuate the ebects of SARS-CoV-2 spike protein S1
subunit in pulmonary endothelial cells,” Int. J. Mol. Sci. 2021, 22, 16: 9041. doi:
https://doi.org/10.3390/ijms22169041 - Kulkoviene G et al., “Diberential Mitochondrial, Oxidative Stress and Inflammatory Responses to
SARS-CoV-2 Spike Protein Receptor Binding Domain in Human Lung Microvascular, Coronary Artery
Endothelial and Bronchial Epithelial Cells,” Int. J. Mol. Sci. 2024, 25, 6: 3188.
doi: https://doi.org/10.3390/ijms25063188 - Marrone L et al., “Tirofiban prevents the ebects of SARS-CoV-2 spike protein on macrophage
activation and endothelial cell death,” Heliyon, 2024, 10, 15, e35341. doi:
10.1016/j.heliyon.2024.e35341 - Meyer K et al., “SARS-CoV-2 Spike Protein Induces Paracrine Senescence and Leukocyte Adhesion in
Endothelial Cells,” J. Virol. 2021, 95: e0079421. doi: https://doi.org/10.1128/jvi.00794-21 - Nuovo JG et al., “Endothelial Cell Damage Is the Central Part of COVID-19 and a Mouse Model
Induced by Injection of the S1 Subunit of the Spike Protein,” Ann. Diagn. Pathol. 2021, 51, 151682.
doi: https://doi.org/10.1016/j.anndiagpath.2020.151682 - Perico L et al., “SARS-CoV-2 and the spike protein in endotheliopathy,” Trends Microbiol. 2024, 32, 1:
53-67. doi: 10.1016/j.tim.2023.06.004 - Perico L et al., “SARS-CoV-2 Spike Protein 1 Activates Microvascular Endothelial Cells and
Complement System Leading to Platelet Aggregation,” Front. Immunol. 2022, 13, 827146. doi:
https://doi.org/10.3389/fimmu.2022.827146 - Raghavan S et al., “SARS-CoV-2 Spike Protein Induces Degradation of Junctional Proteins That
Maintain Endothelial Barrier Integrity,” Front. Cardiovasc. Med. 2021, 8, 687783. doi:
https://doi.org/10.3389/fcvm.2021.687783 - Ratajczak MZ et al., “SARS-CoV-2 Entry Receptor ACE2 Is Expressed on Very Small CD45- Precursors
of Hematopoietic and Endothelial Cells and in Response to Virus Spike Protein Activates the Nlrp3
Inflammasome,” Stem Cell Rev Rep. 2021, 17, 1: 266-277. doi: https://doi.org/10.1007/s12015-020-
10010-z - Robles JP et al., “The Spike Protein of SARS-CoV-2 Induces Endothelial Inflammation through Integrin
α5β1 and NF-κB Signaling,” J. Biol. Chem. 2022, 298, 3: 101695. doi:
https://doi.org/10.1016/j.jbc.2022.101695 - Rotoli BM et al., “Endothelial cell activation by SARS-CoV-2 spike S1 protein: A crosstalk between
endothelium and innate immune cells,” Biomedicines 2021, 9, 9: 1220. doi:
https://doi.org/10.3390/biomedicines9091220 - Ruben ML et al., “The SARS-CoV-2 spike protein subunit S1 induces COVID-19-like acute lung injury
in Κ18-hACE2 transgenic mice and barrier dysfunction in human endothelial cells,” Am J Physiol Lung
Cell Mol Physiol. 2021, 321, 2: L477-L484. doi: https://doi.org/10.1152/ajplung.00223.2021 - Sano H et al., “A case of persistent, confluent maculopapular erythema following a COVID-19 mRNA
vaccination is possibly associated with the intralesional spike protein expressed by vascular
endothelial cells and eccrine glands in the deep dermis,” J. Dermatol. 2023, 50: 1208–1212. doi:
https://doi.org/10.1111/1346-8138.16816 - Santonja C et al., “COVID-19 chilblain-like lesion: immunohistochemical demonstration of SARSCoV-
2 spike protein in blood vessel endothelium and sweat gland epithelium in a polymerase chain
reaction-negative patient,” Br J Dermatol. 2020, 183, 4: 778-780. doi:
https://doi.org/10.1111/bjd.19338 - Scheim DE et al., “Sialylated Glycan Bindings from SARS-CoV-2 Spike Protein to Blood and
Endothelial Cells Govern the Severe Morbidities of COVID-19,” Int. J. Mol. Sci. 2023, 24, 23: 17039.
doi: https://doi.org/10.3390/ijms242317039 - Sirsendu J et al., “Cell-Free Hemoglobin Does Not Attenuate the Ebects of SARS-CoV-2 Spike Protein
S1 Subunit in Pulmonary Endothelial Cells,” Int. J. Mol. Sci., 2021, 22, 16: 9041. doi:
https://doi.org/10.3390/ijms22169041 - Stern B et al., “SARS-CoV-2 spike protein induces endothelial dysfunction in 3D engineered vascular
networks,” J. Biomed. Mater. Res. A. 2023, 112, 4: 524-533. doi: https://doi.org/10.1002/jbm.a.37543 - Villacampa A et al., “SARS-CoV-2 S protein activates NLRP3 inflammasome and deregulates
coagulation factors in endothelial and immune cells,” Cell Commun. Signal. 2024, 22, 38. doi:
https://doi.org/10.1186/s12964-023-01397-6 - Wu ML et al., “Mast cell activation triggered by SARS-CoV-2 causes inflammation in brain
microvascular endothelial cells and microglia,” Front. Cell. Infect. Microbiol. 2024, 14. doi:
https://doi.org/10.3389/fcimb.2024.1358873 - Youn JY et al., “Therapeutic application of estrogen for COVID-19: Attenuation of SARS-CoV-2 spike
protein and IL-6 stimulated, ACE2-dependent NOX2 activation, ROS production and MCP-1
upregulation in endothelial cells,” Redox Biol. 2021, 46: 102099. doi:
https://doi.org/10.1016/j.redox.2021.102099 - Zekri-Nechar K et al., “Spike Protein Subunits of SARS-CoV-2 Alter Mitochondrial Metabolism in
Human Pulmonary Microvascular Endothelial Cells: Involvement of Factor Xa,” Dis. Markers 2022, doi: https://doi.org/10.1155/2022/1118195
M. Gastrointestinal
- Forsyth CB et al., “The SARS-CoV-2 S1 spike protein promotes MAPK and NF-kB activation in human
lung cells and inflammatory cytokine production in human lung and intestinal epithelial
cells,” Microorganisms 2022, 10, 10: 1996. doi: https://doi.org/10.3390/microorganisms10101996 - Li Z et al., “SARS-CoV-2 pathogenesis in the gastrointestinal tract mediated by Spike-induced
intestinal inflammation,” Precis. Clin. Med. 2024, 7, 1: pbad034. doi:
https://doi.org/10.1093/pcmedi/pbad034 - Luo Y et al., “SARS-Cov-2 spike induces intestinal barrier dysfunction through the interaction
between CEACAM5 and Galectin-9,” Front. Immunol. 2024, 15. doi:
https://doi.org/10.3389/fimmu.2024.1303356 - Nascimento RR et al., “SARS-CoV-2 Spike protein triggers gut impairment since mucosal barrier to
innermost layers: From basic science to clinical relevance,” Mucosal Immunol. 2024, 17, 4: 565-583.
doi: https://doi.org/10.1016/j.mucimm.2024.03.00 - Yilmaz A et al., “Diberential proinflammatory responses of colon epithelial cells to SARS-CoV-2 spike
protein and Pseudomonas aeruginosa lipopolysaccharide,” Turk J Biochem. 2024. doi:
https://doi.org/10.1515/tjb-2024-0144 - Yonker LM et al., “Multisystem inflammatory syndrome in children is driven by zonulin-dependent
loss of gut mucosal barrier,” J Clin Invest. 2021, 131, 14: e149633. doi:
https://doi.org/10.1172/JCI149633 - Zeng FM et al., “SARS-CoV-2 spike spurs intestinal inflammation via VEGF production in enterocytes,”
EMBO Mol Med. 2022, 14: e14844. doi: https://doi.org/10.15252/emmm.202114844 - Zollner A et al., “Postacute COVID-19 is Characterized by Gut Viral Antigen Persistence in
Inflammatory Bowel Diseases,” Gastroenterology 2022, 163, 2: 495-506.e8. doi:
https://doi.org/10.1053/j.gastro.2022.04.037
N. Immune dysfunction
- Baldari CT et al., “Emerging Roles of SARS-CoV-2 Spike-ACE2 in Immune Evasion and Pathogenesis,”
Trends Immunol. 2023, 44, 6. doi: https://doi.org/10.1016/j.it.2023.04.001 - Bocquet-Garcon A, “Impact of the SARS-CoV-2 Spike Protein on the Innate Immune System: A
Review,” Cureus 2024, 16, 3: e57008. doi: 10.7759/cureus.57008 - Delgado JF et al., “SARS-CoV-2 spike protein vaccine-induced immune imprinting reduces
nucleocapsid protein antibody response in SARS-CoV-2 infection,” J. Immunol. Res. 2022: 8287087.
doi: https://doi.org/10.1155/2022/8287087 - Freitas RS et al., “SARS-CoV-2 Spike antagonizes innate antiviral immunity by targeting interferon
regulatory factor 3,” Front Cell Infect Microbiol. 2021, 11: 789462. doi:
https://doi.org/10.3389/fcimb.2021.789462 - Irrgang P et al., “Class switch toward noninflammatory, spike-specific IgG4 antibodies after repeated
SARS-CoV-2 mRNA vaccination,” Sci. Immunol. 2022, 8, 79. doi: 10.1126/sciimmunol.ade2798 - Kim MJ et al., “The SARS-CoV-2 spike protein induces lung cancer migration and invasion in a TLR2-
dependent manner,” Cancer Commun (London), 2023, 44, 2: 273–277.
doi: https://doi.org/10.1002/cac2.12485 - Onnis A et al., “SARS-CoV-2 Spike protein suppresses CTL-mediated killing by inhibiting immune
synapse assembly,” J Exp Med 2023, 220, 2: e20220906. doi: https://doi.org/10.1084/jem.20220906
O. Macrophages, monocytes, neutrophils
- Ahn WM et al., “SARS-CoV-2 Spike Protein Stimulates Macropinocytosis in Murine and Human
Macrophages via PKC-NADPH Oxidase Signaling,” Antioxidants 2024, 13, 2: 175.
doi: https://doi.org/10.3390/antiox13020175 - Ait-Belkacem I et al., “SARS-CoV-2 spike protein induces a diberential monocyte activation that may
contribute to age bias in COVID-19 severity,” Sci. Rep. 2022, 12: 20824. doi:
https://doi.org/10.1038/s41598-022-25259-2 - Barhoumi T et al., “SARS-CoV-2 coronavirus Spike protein-induced apoptosis, inflammatory, and
oxidative stress responses in THP-1-like-macrophages: potential role of angiotensin-converting
enzyme inhibitor (perindopril),” Front. Immunol. 2021, 12: 728896. doi:
https://doi.org/10.3389/fimmu.2021.728896 - Bortolotti D et al., “SARS-CoV-2 Spike 1 Protein Controls Natural Killer Cell Activation via the HLAE/
NKG2A Pathway,” Cells 2020, 9, 9: 1975. doi: https://doi.org/10.3390/cells9091975 - Cao X et al., “Spike protein of SARS-CoV-2 activates macrophages and contributes to induction of
acute lung inflammation in male mice,” FASEB J. 2021, 35, e21801. doi:
https://doi.org/10.1096/fj.202002742RR - Chiok K et al., “Proinflammatory Responses in SARS-CoV-2 and Soluble Spike Glycoprotein S1
Subunit Activated Human Macrophages,” Viruses 2023, 15, 3: 754.
doi: https://doi.org/10.3390/v15030754 - Cory TJ et al., “Metformin Suppresses Monocyte Immunometabolic Activation by SARS-CoV-2 Spike
Protein Subunit 1,” Front. Immunol. 2021, 12 (Sec. Cytokines and Soluble Mediators in Immunity):doi: https://doi.org/10.3389/fimmu.2021.733921 - Del Re A et al., “Ultramicronized Palmitoylethanolamide Inhibits NLRP3 Inflammasome Expression
and Pro-Inflammatory Response Activated by SARS-CoV-2 Spike Protein in Cultured Murine Alveolar
Macrophages,” Metabolites 2021, 11, 9: 592. doi: https://doi.org/10.3390/metabo11090592 - Duarte C, “Age-dependent ebects of the recombinant spike protein/SARS-CoV-2 on the M-CSF- and
IL-34-diberentiated macrophages in vitro,” Biochem. Biophys. Res. Commun. 2021, 546: 97–102. doi:
https://doi.org/10.1016/j.bbrc.2021.01.104 - Karwaciak I et al., “Nucleocapsid and Spike Proteins of the Coronavirus Sars-Cov-2 Induce Il6 in
Monocytes and Macrophages—Potential Implications for Cytokine Storm Syndrome,” Vaccines 2021,
9, 1, 54: 1–10. doi: https://doi.org/10.3390/vaccines9010054 - Li T et al., “Platelets Mediate Inflammatory Monocyte Activation by SARS-CoV-2 Spike Protein,” J.
Clin. Invest. 2022, 132, 4: e150101. doi: 10.1172/JCI150101 - Loh JT et al., “Dok3 restrains neutrophil production of calprotectin during TLR4 sensing of SARS-CoV- 2 spike protein,” Front. Immunol. 2022, 13 (Sec. Molecular Innate Immunity). doi:
https://doi.org/10.3389/fimmu.2022.996637 - Marrone L et al., “Tirofiban prevents the ebects of SARS-CoV-2 spike protein on macrophage
activation and endothelial cell death,” Heliyon, 2024, 10, 15: e35341. doi:
10.1016/j.heliyon.2024.e35341 - Miller GM et al., “SARS-CoV-2 and SARS-CoV-2 Spike protein S1 subunit Trigger Proinflammatory
Response in Macrophages in the Absence of Productive Infection,” J. Immunol. 2023, 210
(1_Supplement): 71.30. doi: https://doi.org/10.4049/jimmunol.210.Supp.71.30 - Onnis A et al., “SARS-CoV-2 Spike protein suppresses CTL-mediated killing by inhibiting immune
synapse assembly,” J Exp Med 2023, 220, 2: e20220906. doi: https://doi.org/10.1084/jem.20220906 - Palestra F et al. “SARS-CoV-2 Spike Protein Activates Human Lung Macrophages,” Int. J. Mol.
Sci. 2023, 24, 3: 3036. doi: https://doi.org/10.3390/ijms24033036 - Park C et al., “Murine alveolar Macrophages Rapidly Accumulate intranasally Administered SARSCoV-
2 Spike Protein leading to neutrophil Recruitment and Damage,” Elife 2024, 12, RP86764. doi:
https://doi.org/10.7554/eLife.86764.3 - Park YJ et al., “D-dimer and CoV-2 spike-immune complexes contribute to the production of PGE2
and proinflammatory cytokines in monocytes,” PLoS Pathog. 2022, 18, 4: e1010468. doi:
https://doi.org/10.1371/journal.ppat.1010468 - Park YJ et al., “Pyrogenic and inflammatory mediators are produced by polarized M1 and M2
macrophages activated with D-dimer and SARS-CoV-2 spike immune complexes,” Cytokine 2024,
173: 156447. doi: https://doi.org/10.1016/j.cyto.2023.156447 - Patterson BK et al., “Persistence of SARS CoV-2 S1 Protein in CD16+ Monocytes in Post-Acute
Sequelae of COVID-19 (PASC) up to 15 Months Post-Infection,” Front. Immunol. 12 (Sec. Viral
Immunology). doi: https://doi.org/10.3389/fimmu.2021.746021 - Pence B, “Recombinant SARS-CoV-2 Spike Protein Mediates Glycolytic and Inflammatory Activation
in Human Monocytes,” Innov Aging 2020, 4, sp. 1: 955. doi:
https://doi.org/10.1093/geroni/igaa057.3493 - Satta S et al., “An engineered nano-liposome-human ACE2 decoy neutralizes SARS-CoV-2 Spike
protein-induced inflammation in both murine and human macrophages,” Theranostics 2022, 12, 6:
2639–2657. doi: 10.7150/thno.66831 - Schroeder JT and AP Bieneman, “The S1 Subunit of the SARS-CoV-2 Spike protein activates human
monocytes to produce cytokines linked to COVID-19: relevance to galectin-3,” Front Immunol. 2022,
13: 831763. doi: https://doi.org/10.3389/fimmu.2022.831763 - Shirato K and Takako Kizaki, “SARS-CoV-2 Spike Protein S1 Subunit Induces Pro- inflammatory
Responses via Toll-Like Receptor 4 Signaling in Murine and Human Macrophages,” Heliyon 2021, 7, 2:
e06187, doi: https://doi.org/10.1016/j.heliyon.2021.e06187 - Theobald SJ et al., “Long-lived macrophage reprogramming drives spike protein-mediated
inflammasome activation in COVID-19,” EMBO Mol. Med. 2021, 13:e14150. doi:
https://doi.org/10.15252/emmm.202114150 - Vettori M et al., “Ebects of Diberent Types of Recombinant SARS-CoV-2 Spike Protein on Circulating
Monocytes’ Structure,” Int. J. Mol. Sci. 2023, 24, 11, 9373. doi: https://doi.org/10.3390/ijms24119373 - Youn YJ et al., “Nucleocapsid and spike proteins of SARS-CoV-2 drive neutrophil extracellular trap
formation,” Immune Netw. 2021, 21, 2: e16. doi: https://doi.org/10.4110/in.2021.21.e16 - Zaki H and S Khan, “SARS-CoV-2 spike protein induces inflammatory molecules through TLR2 in
macrophages and monocytes,” J. Immunol. 2021, 206 (1_supplement): 62.07. doi:
https://doi.org/10.4049/jimmunol.206.Supp.62.07
P. MAPK
- Arjsri P et al., “Hesperetin from root extract of Clerodendrum petasites S. Moore inhibits SARS-CoV-2
spike protein S1 subunit-induced Nlrp3 inflammasome in A549 lung cells via modulation of the
Akt/Mapk/Ap-1 pathway,” Int. J. Mol. Sci. 2022, 23, 18: 10346. doi:
https://doi.org/10.3390/ijms231810346 - Bhattacharyya S and JK Tobacman, “SARS-CoV-2 spike protein-ACE2 interaction increases
carbohydrate sulfotransferases and reduces N-acetylgalactosamine-4-sulfatase by p38 MAPK,”
Signal Transduct Target Ther 2024, 9, 39. doi: https://doi.org/10.1038/s41392-024-01741-3 - Forsyth CB et al., “The SARS-CoV-2 S1 spike protein promotes MAPK and NF-kB activation in human
lung cells and inflammatory cytokine production in human lung and intestinal epithelial
cells,” Microorganisms 2022, 10, 10: 1996. doi: https://doi.org/10.3390/microorganisms10101996 - Johnson EL et al., “The S1 spike protein of SARS-CoV-2 upregulates the ERK/MAPK signaling pathway
in DC-SIGN-expressing THP-1 cells,” Cell Stress Chaperones 2024, 29, 2: 227-234. doi:
https://doi.org/10.1016/j.cstres.2024.03.002 - Khan S et al., “SARS-CoV-2 Spike Protein Induces Inflammation via TLR2-Dependent Activation of the
NF-κB Pathway,” eLife 2021, 10: e68563, doi: https://doi.org/10.7554/elife.68563 - Kircheis R and O Planz, “Could a Lower Toll-like Receptor (TLR) and NF-κB Activation Due to a
Changed Charge Distribution in the Spike Protein Be the Reason for the Lower Pathogenicity of
Omicron?” Int. J. Mol. Sci. 2022, 23, 11: 5966. doi: https://doi.org/10.3390/ijms23115966 - Kyriakopoulos AM et al., “Mitogen Activated Protein Kinase (MAPK) Activation, p53, and Autophagy
Inhibition Characterize the Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) Spike
Protein Induced Neurotoxicity,” Cureus 2022, 14, 12: e32361. doi: 10.7759/cureus.32361 - Robles JP et al., “The Spike Protein of SARS-CoV-2 Induces Endothelial Inflammation through Integrin
α5β1 and NF-κB Signaling,” J. Biol. Chem. 2022, 298, 3: 101695. doi:
https://doi.org/10.1016/j.jbc.2022.101695 - Sharma VK et al., “Nanocurcumin Potently Inhibits SARS-CoV-2 Spike Protein-Induced Cytokine
Storm by Deactivation of MAPK/NF-κB Signaling in Epithelial Cells,” ACS Appl. Bio Mater. 2022, 5, 2:
483–491. doi: https://doi.org/10.1021/acsabm.1c00874 - Bhattacharyya S and JK Tobacman, “SARS-CoV-2 spike protein-ACE2 interaction increases
carbohydrate sulfotransferases and reduces N-acetylgalactosamine-4-sulfatase by p38 MAPK,”
Signal Transduct Target Ther 2024, 9, 39. doi: https://doi.org/10.1038/s41392-024-01741-3
Q. Mast cells
- Cao JB et al., “Mast cell degranulation-triggered by SARS-CoV-2 induces tracheal-bronchial epithelial
inflammation and injury,” Virol. Sin. 2024, 39, 2: 309-318. doi:
https://doi.org/10.1016/j.virs.2024.03.001 - Fajloun Z et al., “SARS-CoV-2 or Vaccinal Spike Protein can Induce Mast Cell Activation Syndrome
(MCAS),” Infect Disord Drug Targets, 2025, 25, 1: e300424229561. doi:
10.2174/0118715265319896240427045026 - Wu ML et al., “Mast cell activation triggered by SARS-CoV-2 causes inflammation in brain
microvascular endothelial cells and microglia,” Front. Cell. Infect. Microbiol., 2024, 14. doi:
https://doi.org/10.3389/fcimb.2024.1358873
R. Microglia
- Chang MH et al., “SARS-CoV-2 Spike Protein 1 Causes Aggregation of α-Synuclein via Microglia-
Induced Inflammation and Production of Mitochondrial ROS: Potential Therapeutic Applications of
Metformin,” Biomedicines 2024, 12, 6: 1223. doi: https://doi.org/10.3390/biomedicines12061223 - Clough E et al., “Mitochondrial Dynamics in SARS-COV2 Spike Protein Treated Human Microglia:
Implications for Neuro-COVID,” J. Neuroimmune Pharmacol. 2021, 16, 4: 770–784. doi:
https://doi.org/10.1007/s11481-021-10015-6 - Frank MG et al., “SARS-CoV-2 Spike S1 Subunit Induces Neuroinflammatory, Microglial and
Behavioral Sickness Responses: Evidence of PAMP-Like Properties,” Brain Behav. Immun. 2022, 100:doi: https://doi.org/10.1016/j.bbi.2021.12.007 - Mishra R and AC Banerjea, “SARS-CoV-2 Spike targets USP33-IRF9 axis via exosomal miR-148a to
activate human microglia,” Front. Immunol. 2021, 12: 656700. doi:
https://doi.org/10.3389/fimmu.2021.656700 - Olajide OA et al., “SARS-CoV-2 spike glycoprotein S1 induces neuroinflammation in BV-2 microglia,”
Mol. Neurobiol. 2022, 59: 445-458. doi: https://doi.org/10.1007/s12035-021-02593-6 - Wu ML et al., “Mast cell activation triggered by SARS-CoV-2 causes inflammation in brain
microvascular endothelial cells and microglia,” Front. Cell. Infect. Microbiol. 2024, 14. doi:
https://doi.org/10.3389/fcimb.2024.1358873
S. Microvascular
- Avolio E et al., “The SARS-CoV-2 Spike Protein Disrupts Human Cardiac Pericytes Function through
CD147 Receptor-Mediated Signalling: A Potential Non-infective Mechanism of COVID-19
Microvascular Disease,” Clin. Sci. 2021, 135, 24: 2667–2689. doi:
https://doi.org/10.1042/CS20210735 - Bhargavan B and GD Kanmogne, “SARS-CoV-2 spike proteins and cell–cell communication inhibits
TFPI and induces thrombogenic factors in human lung microvascular endothelial cells and
neutrophils: implications for COVID-19 coagulopathy pathogenesis,” Int. J. Mol. Sci. 2022, 23, 18:doi: https://doi.org/10.3390/ijms231810436 - Kulkoviene G et al., “Diberential Mitochondrial, Oxidative Stress and Inflammatory Responses to
SARS-CoV-2 Spike Protein Receptor Binding Domain in Human Lung Microvascular, Coronary Artery
Endothelial and Bronchial Epithelial Cells,” Int. J. Mol. Sci. 2024, 25, 6: 3188.
doi: https://doi.org/10.3390/ijms25063188 - Magro N et al., “Disruption of the blood-brain barrier is correlated with spike endocytosis by ACE2 +
endothelia in the CNS microvasculature in fatal COVID-19. Scientific commentary on ‘Detection of
blood-brain barrier disruption in brains of patients with COVID-19, but no evidence of brain
penetration by SARS-CoV-2’,” Acta Neuropathol. 2024, 147, 1: 47. doi:
https://doi.org/10.1007/s00401-023-02681-y - Panigrahi S et al., “SARS-CoV-2 Spike Protein Destabilizes Microvascular Homeostasis,” Microbiol
Spectr. 2021, 9, 3: e0073521. doi: https://doi.org/10.1128/Spectrum.00735-21 - Perico L et al., “SARS-CoV-2 Spike Protein 1 Activates Microvascular Endothelial Cells and
Complement System Leading to Platelet Aggregation,” Front. Immunol. 2022, 13, 827146. doi:
https://doi.org/10.3389/fimmu.2022.827146 - Wu ML et al., “Mast cell activation triggered by SARS-CoV-2 causes inflammation in brain
microvascular endothelial cells and microglia,” Front. Cell. Infect. Microbiol. 2024, 14. doi:
https://doi.org/10.3389/fcimb.2024.1358873 - Zekri-Nechar K et al., “Spike Protein Subunits of SARS-CoV-2 Alter Mitochondrial Metabolism in
Human Pulmonary Microvascular Endothelial Cells: Involvement of Factor Xa,” Dis. Markers 2022:doi: https://doi.org/10.1155/2022/1118195
T. MIS-C, pediatric
- Colmenero I et al., “SARS-CoV-2 endothelial infection causes COVID-19 chilblains:
histopathological, immunohistochemical and ultrastructural study of seven paediatric cases,” Br
J Dermatol. 2020, 183: 729-737. doi: https://doi.org/10.1111/bjd.19327/ - De Sousa PMB et al., “Fatal Myocarditis following COVID-19 mRNA Immunization: A Case Report
and Diberential Diagnosis Review,” Vaccines 2024, 12, 2: 194.
doi: https://doi.org/10.3390/vaccines12020194 - Mayordomo-Colunga J et al., “SARS-CoV-2 spike protein in intestinal cells of a patient with
coronavirus disease 2019 multisystem inflammatory syndrome,” J Pediatr. 2022, 243: 214-18e215.
doi: https://doi.org/10.1016/j.jpeds.2021.11.058 - Rivas MN et al., “COVID-19–associated multisystem inflammatory syndrome in children (MIS-C):
A novel disease that mimics toxic shock syndrome—the superantigen hypothesis,” J Allergy Clin
Immunol 2021, 147, 1: 57-59. doi: 10.1016/j.jaci.2020.10.008 - Rivas MN et al., “Multisystem Inflammatory Syndrome in Children and Long COVID: The SARSCoV-
2 Viral Superantigen Hypothesis,” Front Immunol. 2022, 13 (Sec. Molecular Innate Immunity)
doi: https://doi.org/10.3389/fimmu.2022.941009 - Sacco K et al., “Immunopathological signatures in multisystem inflammatory syndrome in
children and pediatric COVID-19,” Nat. Med. 2022, 28: 1050-1062. doi:
https://doi.org/10.1038/s41591-022-01724-3 - Yonker LM et al., “Multisystem inflammatory syndrome in children is driven by zonulin-dependent
loss of gut mucosal barrier,” J Clin Invest. 2021, 131, 14: e149633. doi:
https://doi.org/10.1172/JCI149633
U. Mitochondria/metabolism
- Cao X et al., “The SARS-CoV-2 spike protein induces long-term transcriptional perturbations of
mitochondrial metabolic genes, causes cardiac fibrosis, and reduces myocardial contractile in
obese mice,” Mol. Metab. 2023, 74, 101756. doi: https://doi.org/10.1016/j.molmet.2023.101756 - Chang MH et al., “SARS-CoV-2 Spike Protein 1 Causes Aggregation of α-Synuclein via Microglia-
Induced Inflammation and Production of Mitochondrial ROS: Potential Therapeutic Applications of
Metformin,” Biomedicines 2024, 12, 6: 1223. doi: https://doi.org/10.3390/biomedicines12061223 - Clough E et al., “Mitochondrial Dynamics in SARS-COV2 Spike Protein Treated Human Microglia:
Implications for Neuro-COVID,” Journal of Neuroimmune Pharmacology 2021, 16, 4: 770–784. doi:
https://doi.org/10.1007/s11481-021-10015-6 - Huynh TV et al., “Spike Protein Impairs Mitochondrial Function in Human Cardiomyocytes:
Mechanisms Underlying Cardiac Injury in COVID-19,” Cells 2023, 12, 877. doi:
https://doi.org/10.3390/cells12060877 - Kulkoviene G et al., “Diberential Mitochondrial, Oxidative Stress and Inflammatory Responses to
SARS-CoV-2 Spike Protein Receptor Binding Domain in Human Lung Microvascular, Coronary Artery
Endothelial and Bronchial Epithelial Cells,” Int. J. Mol. Sci. 2024, 25, 6: 3188.
doi: https://doi.org/10.3390/ijms25063188 - Mercado-Gómez M et al., “The spike of SARS-CoV-2 promotes metabolic rewiring in
hepatocytes,” Commun. Biol. 2022, 5, 827. doi: https://doi.org/10.1038/s42003-022-03789-9 - Nguyen V, “The Spike Protein of SARS-CoV-2 Impairs Lipid Metabolism and Increases Susceptibility
to Lipotoxicity: Implication for a Role of Nrf2,” Cells 2022, 11, 12: 1916. doi:
https://doi.org/10.3390/cells11121916 - Yeung-Luk BH et al., “SARS-CoV-2 infection alters mitochondrial and cytoskeletal function in human
respiratory epithelial cells mediated by expression of spike protein,” mBio 2023, 14, 4: e00820-23.
doi: https://doi.org/10.1128/mbio.00820-23 - Zekri-Nechar K et al., “Spike Protein Subunits of SARS-CoV-2 Alter Mitochondrial Metabolism in
Human Pulmonary Microvascular Endothelial Cells: Involvement of Factor Xa,” Dis. Markers 2022,doi: https://doi.org/10.1155/2022/1118195
V. Myocarditis/cardiac/cardiomyopathy
- Abdi A et al., “Biomed Interaction of SARS-CoV-2 with cardiomyocytes: Insight into the underlying
molecular mechanisms of cardiac injury and pharmacotherapy,” Pharmacother. 2022, 146: 112518.
doi: 10.1016/j.biopha.2021.112518 - Avolio E et al., “The SARS-CoV-2 Spike Protein Disrupts Human Cardiac Pericytes Function through
CD147 Receptor-Mediated Signalling: A Potential Non-infective Mechanism of COVID-19
Microvascular Disease,” Clin. Sci. 2021, 135, 24: 2667–2689. doi:
https://doi.org/10.1042/CS20210735 - Baumeier C et al., “Intramyocardial Inflammation after COVID-19 Vaccination: An Endomyocardial
Biopsy-Proven Case Series,” Int. J. Mol. Sci. 2022, 23: 6940. doi:
https://doi.org/10.3390/ijms23136940 - Bellavite P et al., “Immune response and molecular mechanisms of cardiovascular adverse ebects
of spike proteins from SARS-coV-2 and mRNA vaccines,” Biomedicines 2023, 11, 2: 451. doi:
https://doi.org/10.3390/biomedicines11020451 - Boretti A. “PQQ Supplementation and SARS-CoV-2 Spike Protein-Induced Heart Inflammation,” Nat.
Prod. Commun. 2022, 17, 1934578×221080929. doi: https://doi.org/10.1177/1934578X221080929 - Buoninfante A et al., “Myocarditis associated with COVID-19 vaccination,” npj Vaccines 2024, 122.
doi: https://doi.org/10.1038/s41541-024-00893-1 - Cao X et al., “The SARS-CoV-2 spike protein induces long-term transcriptional perturbations of
mitochondrial metabolic genes, causes cardiac fibrosis, and reduces myocardial contractile in
obese mice,” Mol. Metab. 2023, 74, 101756. doi: https://doi.org/10.1016/j.molmet.2023.101756 - Clemens DJ et al., “SARS-CoV-2 spike protein-mediated cardiomyocyte fusion may contribute to
increased arrhythmic risk in COVID-19,” PLoS One 2023, 18, 3: e0282151.
doi: https://doi.org/10.1371/journal.pone.0282151 - De Sousa PMB et al., “Fatal Myocarditis following COVID-19 mRNA Immunization: A Case Report and
Diberential Diagnosis Review,” Vaccines 2024, 12, 2: 194.
doi: https://doi.org/10.3390/vaccines12020194 - Forte E, “Circulating spike protein may contribute to myocarditis after COVID-19 vaccination,” Nat.
Cardiovasc. Res. 2023, 2: 100. doi: https://doi.org/10.1038/s44161-023-00222-0 - Huang X et al., “Sars-Cov-2 Spike Protein-Induced Damage of hiPSC-Derived Cardiomyocytes,” Adv.
Biol. 2022, 6, 7: e2101327. doi: https://doi.org/10.1002/adbi.202101327 - Hulscher N et al., “Autopsy findings in cases of fatal COVID-19 vaccine-induced myocarditis,” ESC
Heart Failure 2024. doi: https://doi.org/10.1002/ehf2.14680 - Huynh TV et al., “Spike Protein Impairs Mitochondrial Function in Human Cardiomyocytes:
Mechanisms Underlying Cardiac Injury in COVID-19,” Cells 2023, 12, 877. doi:
https://doi.org/10.3390/cells12060877 - Huynh TV et al., “Spike Protein of SARS-CoV-2 Activates Cardiac Fibrogenesis through NLRP3
Inflammasomes and NF-κB Signaling,” Cells 2024, 13, 16: 1331.
doi: https://doi.org/10.3390/cells13161331 - Imig JD, “SARS-CoV-2 spike protein causes cardiovascular disease independent of viral infection,”
Clin Sci (Lond) 2022, 136, 6: 431–434. doi: https://doi.org/10.1042/CS20220028 - Kato Y et al., “TRPC3-Nox2 Protein Complex Formation Increases the Risk of SARS-CoV-2 Spike
Protein-Induced Cardiomyocyte Dysfunction through ACE2 Upregulation,” Int. J. Mol. Sci. 2023, 24, 1: doi: https://doi.org/10.3390/ijms24010102 - Kawano H et al., “Fulminant Myocarditis 24 Days after Coronavirus Disease Messenger Ribonucleic
Acid Vaccination,” Intern. Med. 2022, 61, 15: 2319-2325. doi:
https://doi.org/10.2169/internalmedicine.9800-22 - Li C. et al., “Intravenous Injection of Coronavirus Disease 2019 (COVID-19) MRNA Vaccine Can
Induce Acute Myopericarditis in Mouse Model,” Clin. Infect. Dis. 2022, 74, 11: 1933-1950. doi:
https://doi.org/10.1093/cid/ciab707 - Lin Z, “More than a key—the pathological roles of SARS-CoV-2 spike protein in COVID-19 related
cardiac injury,” Sports Med Health Sci 2023, 6, 3: 209-220.
doi: https://doi.org/10.1016/j.smhs.2023.03.004 - Rzymski P and Andrzej Fal, “To aspirate or not to aspirate? Considerations for the COVID-19
vaccines,” Pharmacol. Rep 2022, 74: 1223–1227. doi: https://doi.org/10.1007/s43440-022-00361-4 - Schreckenberg R et al., “Cardiac side ebects of RNA-based SARS-CoV-2 vaccines: Hidden
cardiotoxic ebects of mRNA-1273 and BNT162b2 on ventricular myocyte function and structure,” Br.
J. Pharmacol. 2024, 181, 3: 345-361. doi: https://doi.org/10.1111/bph.16262 - Yonker LM et al., “Circulating Spike Protein Detected in Post–COVID-19 mRNA Vaccine Myocarditis,”
Circulation 2023, 147, 11. doi: https://doi.org/10.1161/CIRCULATIONAHA.122.061025
W. NLRP3
- Albornoz EA et al., “SARS-CoV-2 drives NLRP3 inflammasome activation in human microglia through
spike protein,” Mol. Psychiatr. 2023, 28: 2878–2893. doi: https://doi.org/10.1038/s41380-022-01831-
0 - Arjsri P et al., “Hesperetin from root extract of Clerodendrum petasites S. Moore inhibits SARS-CoV-2
spike protein S1 subunit-induced Nlrp3 inflammasome in A549 lung cells via modulation of the
Akt/Mapk/Ap-1 pathway,” Int. J. Mol. Sci. 2022, 23, 18: 10346. doi:
https://doi.org/10.3390/ijms231810346 - Chittasupho C et al., “Inhibition of SARS-CoV-2-Induced NLRP3 Inflammasome-Mediated Lung Cell
Inflammation by Triphala-Loaded Nanoparticle Targeting Spike Glycoprotein S1,”
Pharmaceutics 2024, 16, 6: 751. https://doi.org/10.3390/pharmaceutics16060751 - Chittasupho C et al., “Targeting spike glycoprotein S1 mediated by NLRP3 inflammasome machinery
and the cytokine releases in A549 lung epithelial cells by nanocurcumin,” Pharmaceuticals (Basel)
2023, 16, 6: 862. doi: https://doi.org/10.3390/ph16060862 - Corpetti C et al., “Cannabidiol inhibits SARS-Cov-2 spike (S) protein-induced cytotoxicity and
inflammation through a PPARγ-dependent TLR4/NLRP3/Caspase-1 signaling suppression in Caco-2
cell line,” Phytother. Res. 2021, 35, 12: 6893–6903. doi: https://doi.org/10.1002/ptr.7302 - Del Re A et al., “Ultramicronized Palmitoylethanolamide Inhibits NLRP3 Inflammasome Expression
and Pro-Inflammatory Response Activated by SARS-CoV-2 Spike Protein in Cultured Murine Alveolar
Macrophages.” Metabolites 2021, 11, 9: 592. dsoi: https://doi.org/10.3390/metabo11090592 - Dissook S et al., “Luteolin-rich fraction from Perilla frutescens seed meal inhibits spike glycoprotein
S1 of SARS-CoV-2-induced NLRP3 inflammasome lung cell inflammation via regulation of
JAK1/STAT3 pathway: A potential anti-inflammatory compound against inflammation-induced long-
COVID,” Front. Med. 2023, 9: 1072056. doi: https://doi.org/10.3389/fmed.2022.1072056 - Huynh TV et al., “Spike Protein of SARS-CoV-2 Activates Cardiac Fibrogenesis through NLRP3
Inflammasomes and NF-κB Signaling,” Cells 2024, 13, 16: 1331.
doi: https://doi.org/10.3390/cells13161331 - Jiang Q et al., “SARS-CoV-2 spike S1 protein induces microglial NLRP3-dependent
neuroinflammation and cognitive impairment in mice,” Exp. Neurol. 2025, 383: 115020. doi:
https://doi.org/10.1016/j.expneurol.2024.115020 - Kucia M et al. “An evidence that SARS-Cov-2/COVID-19 spike protein (SP) damages hematopoietic
stem/progenitor cells in the mechanism of pyroptosis in Nlrp3 inflammasome-dependent
manner,” Leukemia 2021, 35: 3026-3029. doi: https://doi.org/10.1038/s41375-021-01332-z - Ratajczak MZ et al., “SARS-CoV-2 Entry Receptor ACE2 Is Expressed on Very Small CD45- Precursors
of Hematopoietic and Endothelial Cells and in Response to Virus Spike Protein Activates the Nlrp3
Inflammasome,” Stem Cell Rev Rep. 2021, 17, 1: 266-277. doi: https://doi.org/10.1007/s12015-020-
10010-z - Semmarath W et al., “Cyanidin-3-O-glucoside and Peonidin-3-O-glucoside-Rich Fraction of Black
Rice Germ and Bran Suppresses Inflammatory Responses from SARS-CoV-2 Spike Glycoprotein S1-
Induction In Vitro in A549 Lung Cells and THP-1 Macrophages via Inhibition of the NLRP3
Inflammasome Pathway,” Nutrients 2022, 14, 13: 2738. doi: https://doi.org/10.3390/nu14132738 - Villacampa A et al., “SARS-CoV-2 S protein activates NLRP3 inflammasome and deregulates
coagulation factors in endothelial and immune cells,” Cell Commun. Signal. 2024, 22, 38. doi:
https://doi.org/10.1186/s12964-023-01397-6
X. Ocular, ophthalmic, conjunctival
- Golob-Schwarzl N et al., “SARS-CoV-2 spike protein functionally interacts with primary human
conjunctival epithelial cells to induce a pro-inflammatory response,” Eye 2022, 36: 2353–5. doi:
https://doi.org/10.1038/s41433-022-02066-7 - Grishma K and Das Sarma, “The Role of Coronavirus Spike Protein in Inducing Optic Neuritis in Mice:
Parallels to the SARS-CoV-2 Virus,” J Neuroophthalmol 2024, 44, 3: 319-329. doi:
10.1097/WNO.0000000000002234 - Zhu G et al., “SARS-CoV-2 spike protein-induced host inflammatory response signature in human
corneal epithelial cells,” Mol. Med. Rep. 2021, 24: 584. doi: https://doi.org/10.3892/mmr.2021.12223
Y. Other cell signaling
- Caohuy H et al., “Inflammation in the COVID-19 airway is due to inhibition of CFTR signaling by the
SARS-CoV-2 spike protein,” Sci. Rep. 2024, 14: 16895. doi: https://doi.org/10.1038/s41598-024-
66473-4 - Choi JY et al., “SARS-CoV-2 spike S1 subunit protein-mediated increase of beta-secretase 1 (BACE1)
impairs human brain vessel cells,” Biochem. Biophys. Res. Commun. 2022, 625, 20: 66-71.
doi: https://doi.org/10.1016/j.bbrc.2022.07.113 - Corpetti C et al., “Cannabidiol inhibits SARS-Cov-2 spike (S) protein-induced cytotoxicity and
inflammation through a PPARγ-dependent TLR4/NLRP3/Caspase-1 signaling suppression in Caco-2
cell line,” Phytother. Res. 2021, 35, 12: 6893–6903. doi: https://doi.org/10.1002/ptr.7302 - Gracie NP et al., “Cellular signalling by SARS-CoV-2 spike protein,” Microbiology Australia 2024, 45, 1:
13-17. doi: https://doi.org/10.1071/MA24005 - Li F et al., “SARS-CoV-2 Spike Promotes Inflammation and Apoptosis Through Autophagy by ROSSuppressed
PI3K/AKT/mTOR Signaling,” Biochim Biophys Acta BBA – Mol Basis Dis 2021, 1867: doi: https://doi.org/10.1016/j.bbadis.2021.166260 - Li K et al., “SARS-CoV-2 Spike protein promotes vWF secretion and thrombosis via endothelial
cytoskeleton-associated protein 4 (CKAP4),” Signal Transduct Targ Ther 2022, 7, 332. doi:
https://doi.org/10.1038/s41392-022-01183-9 - Moutal A et al., “SARS-CoV-2 Spike protein co-opts VEGF-A/Neuropilin-1 receptor signaling to induce
analgesia,” Pain 2020, 162, 1: 243–252. doi: 10.1097/j.pain.0000000000002097 - Munavilli GG et al., “COVID-19/SARS-CoV-2 virus spike protein-related delayed inflammatory
reaction to hyaluronic acid dermal fillers: a challenging clinical conundrum in diagnosis and
treatment,” Arch. Dermatol. Res. 2022, 314: 1-15. doi: https://doi.org/10.1007/s00403-021-02190-6 - Prieto-Villalobos J et al., “SARS-CoV-2 spike protein S1 activates Cx43 hemichannels and disturbs
intracellular Ca2+ dynamics,” Biol Res. 2023, 56, 1: 56. doi: https://doi.org/10.1186/s40659-023-
00468-9 - Rotoli BM et al., “Endothelial cell activation by SARS-CoV-2 spike S1 protein: A crosstalk between
endothelium and innate immune cells,” Biomedicines 2021, 9, 9: 1220. doi:
https://doi.org/10.3390/biomedicines9091220 - Singh N and Anuradha Bharara Singh, “S2 Subunit of SARS-nCoV-2 Interacts with Tumor Suppressor
Protein p53 and BRCA: An in Silico Study,” Translational Oncology 2020, 13, 10: 100814. doi:
https://doi.org/10.1016/j.tranon.2020.100814 - Singh RD, “The spike protein of sars-cov-2 induces heme oxygenase-1: pathophysiologic
implications,” Biochim Biophys Acta, Mol Basis Dis 2022, 1868, 3: 166322. doi:
https://doi.org/10.1016/j.bbadis.2021.166322 - Solis O et al., “The SARS-CoV-2 spike protein binds and modulates estrogen receptors,” Sci.
Adv. 2022, 8, 48: eadd4150. doi: 10.1126/sciadv.add4150 - Suzuki YJ et al., “SARS-CoV-2 spike protein-mediated cell signaling in lung vascular cells,” Vascul.
Pharmacol. 2021, 137: 106823. doi: https://doi.org/10.1016/j.vph.2020.106823 - Suzuki YJ and SG Gychka, “SARS-CoV-2 Spike Protein Elicits Cell Signaling in Human Host Cells:
Implications for Possible Consequences of COVID-19 Vaccines,” Vaccines 2021, 9, 1: 36.
doi: https://doi.org/10.3390/vaccines9010036 - Tillman TS et al., “SARS-CoV-2 Spike Protein Downregulates Cell Surface alpha7nAChR through a
Helical Motif in the Spike Neck,” ACS Chem. Neurosci. 2023, 14, 4: 689–698. doi:
https://doi.org/10.1021/acschemneuro.2c00610
Z. PASC, post COVID, long COVID
- Bellucci M et al., “Post-SARS-CoV-2 infection and post-vaccine-related neurological complications
share clinical features and the same positivity to anti-ACE2 antibodies,” Front. Immunol. 2024, 15
(Sec. Multiple Sclerosis and Neuroimmunology). doi: https://doi.org/10.3389/fimmu.2024.1398028 - Craddock V et al., “Persistent circulation of soluble and extracellular vesicle-linked Spike protein in
individuals with postacute sequelae of COVID-19,” J Med. Virol. 2023, 95, 2: e28568. doi:
https://doi.org/10.1002/jmv.28568 - Dissook S et al., “Luteolin-rich fraction from Perilla frutescens seed meal inhibits spike glycoprotein
S1 of SARS-CoV-2-induced NLRP3 inflammasome lung cell inflammation via regulation of JAK1/STAT3 pathway: A potential anti-inflammatory compound against inflammation-induced long-COVID,” Front.
Med. 2023, 9: 1072056. doi: https://doi.org/10.3389/fmed.2022.1072056 - Frank MG et al., “Exploring the immunogenic properties of SARS-CoV-2 structural proteins: PAMP:TLR signaling in the mediation of the neuroinflammatory and neurologic sequelae of COVID-19,” Brain Behav Immun 2023, 111. doi: https://doi.org/10.1016/j.bbi.2023.04.009
- Frank MG et al., “SARS-CoV-2 S1 subunit produces a protracted priming of the neuroinflammatory,
physiological, and behavioral responses to a remote immune challenge: A role for corticosteroids,”
Brain Behav. Immun. 2024, 121: 87-103. doi: https://doi.org/10.1016/j.bbi.2024.07.034 - Fraser ME at al., “SARS-CoV-2 Spike Protein and Viral RNA Persist in the Lung of Patients With Post-
COVID Lung Disease (abstract),” Am J Respir Crit Care Med 2024, 209: A4193. doi:
https://doi.org/10.1164/ajrccm-conference.2024.209.1_MeetingAbstracts.A4193 - Goh D et al., “Case report: Persistence of residual antigen and RNA of the SARS-CoV-2 virus in tissues
of two patients with long COVID,” Front. Immunol. 2022, 13 (Sec. Viral Immunology). doi:
https://doi.org/10.3389/fimmu.2022.939989 - Halma MTJ et al., “Exploring autophagy in treating SARS-CoV-2 spike protein-related pathology,”
Endocrinol Metab (EnM) 2024, 14: 100163. doi: https://doi.org/10.1016/j.endmts.2024.100163 - Halma MTJ et al., “Strategies for the Management of Spike Protein-Related Pathology,” Microorganisms
2023, 11, 5: 1308, doi: https://doi.org/10.3390/microorganisms11051308 - Hano S et al., “A case of persistent, confluent maculopapular erythema following a COVID-19 mRNA
vaccination is possibly associated with the intralesional spike protein expressed by vascular
endothelial cells and eccrine glands in the deep dermis,” J Dermatol 2023, 50, 9: 1208-1212. doi:
https://doi.org/10.1111/1346-8138.16816 - Patterson BK et al., “Persistence of SARS CoV-2 S1 Protein in CD16+ Monocytes in Post-Acute
Sequelae of COVID-19 (PASC) up to 15 Months Post-Infection,” Front. Immunol. 12 (Sec. Viral
Immunology). doi: https://doi.org/10.3389/fimmu.2021.746021 - Peluso MJ et al., “Plasma-based antigen persistence in the post-acute phase of COVID-19,” Lancet
2024, 24, 6: E345-E347. doi: 10.1016/S1473-3099(24)00211-1 - Rong Z et al., “Persistence of spike protein at the skull-meninges-brain axis may contribute to the
neurological sequelae of COVID-19,” Cell Host Microbe 2024, 26: S1931-3128(24)00438-4. doi:
10.1016/j.chom.2024.11.007 - Scholkmann F and CA May, “COVID-19, post-acute COVID-19 syndrome (PACS, ‘long COVID’) and
post-COVID-19 vaccination syndrome (PCVS, ‘post-COVIDvac-syndrome’): Similarities and
diberences,” Pathol Res Pract. 2023, 246: 154497. doi: https://doi.org/10.1016/j.prp.2023.154497 - Schultheiss C et al., “Liquid biomarkers of macrophage dysregulation and circulating spike protein
illustrate the biological heterogeneity in patients with post-acute sequelae of COVID-19,” J Med Virol
2023, 95, 1: e28364. doi: https://doi.org/10.1002/jmv.28364 - Swank Z, et al. “Persistent Circulating Severe Acute Respiratory Syndrome Coronavirus 2 Spike Is
Associated With Post-acute Coronavirus Disease 2019 Sequelae,” Clin. Infect. Dis. 2023, 76, 3: e487–
e490. doi: https://doi.org/10.1093/cid/ciac722 - Theoharides TC, “Could SARS-CoV-2 Spike Protein Be Responsible for Long-COVID Syndrome?” Mol.
Neurobiol. 2022, 59, 3: 1850–1861. doi: https://doi.org/10.1007/s12035-021-02696-0 - Visvabharathy L et al., “Case report: Treatment of long COVID with a SARS-CoV-2 antiviral and IL-6
blockade in a patient with rheumatoid arthritis and SARS-CoV-2 antigen persistence,” Front. Med.
2022, 9 (Sec. Infectious Diseases – Surveillance). doi: https://doi.org/10.3389/fmed.2022.1003103 - Yamamoto M et al., “Persistent varicella zoster virus infection following mRNA COVID-19 vaccination
was associated with the presence of encoded spike protein in the lesion,” J. Cutan Immunol. Allergy.
2022:1–6. doi: https://doi.org/10.1002/cia2.12278 - Zollner A et al., “Postacute COVID-19 is Characterized by Gut Viral Antigen Persistence in
Inflammatory Bowel Diseases,” Gastroenterology 2022, 163, 2: 495-506.e8. doi:
https://doi.org/10.1053/j.gastro.2022.04.037
AA. Pregnancy
- Erdogan MA, “Prenatal SARS-CoV-2 Spike Protein Exposure Induces Autism-Like Neurobehavioral
Changes in Male Neonatal Rats,” J Neuroimmune Pharmacol. 2023, 18, 4: 573-591. doi:
10.1007/s11481-023-10089-4 - Guo X et al., “Regulation of proinflammatory molecules and tissue factor by SARS-CoV-2 spike
protein in human placental cells: implications for SARS-CoV-2 pathogenesis in pregnant women,”
Front. Immunol. 2022, 13: 876555–876555. doi: https://doi.org/10.3389/fimmu.2022.876555 - Kammala AK et al., “In vitro mRNA-S maternal vaccination induced altered immune regulation at the
maternal-fetal interface,” Am. J. Reprod. Immunol. 2024, 91, 5: e13861. doi:
https://doi.org/10.1111/aji.13861 - Karrow NA et al., “Maternal COVID-19 Vaccination and Its Potential Impact on Fetal and Neonatal
Development,” Vaccines 2021, 9: 1351. doi: https://doi.org/10.3390/vaccines9111351 - Parcial ALN et al., “SARS-CoV-2 Is Persistent in Placenta and Causes Macroscopic,
Histopathological, and Ultrastructural Changes,” Viruses 2022, 14, 9: 1885.
doi: https://doi.org/10.3390/v14091885 - Wu H et al., “Molecular evidence suggesting the persistence of residual SARS-CoV-2 and immune
responses in the placentas of pregnant patients recovered from COVID-19,” Cell Prolif. 2021, 54, 9:
e13091. doi: https://doi.org/10.1111/cpr.13091 - Zurlow M et al., “The anti-SARS-CoV-2 BNT162b2 vaccine suppresses mithramycin-induced erythroid
diberentiation and expression of embryo-fetal globin genes in human erythroleukemia K562 cells.”
Exp Cell Res 2023, 433, 2: 113853. doi: https://doi.org/10.1016/j.yexcr.2023.113853
BB. Pulmonary, respiratory
- Bhargavan B and GD Kanmogne, “SARS-CoV-2 spike proteins and cell–cell communication inhibits
TFPI and induces thrombogenic factors in human lung microvascular endothelial cells and
neutrophils: implications for COVID-19 coagulopathy pathogenesis,” Int. J. Mol. Sci. 2022, 23, 18:doi: https://doi.org/10.3390/ijms231810436 - Biancatelli RMLC et al., “The SARS-CoV-2 spike protein subunit S1 induces COVID-19-like acute lung
injury in Kappa18-hACE2 transgenic mice and barrier dysfunction in human endothelial cells,” Am. J.
Physiol. Lung Cell. Mol. Physiol. 2021, 321: L477–L484. doi:
https://doi.org/10.1152/ajplung.00223.2021 - Cao JB et al., “Mast cell degranulation-triggered by SARS-CoV-2 induces tracheal-bronchial epithelial
inflammation and injury,” Virol. Sin. 2024, 39, 2: 309-318. doi:
https://doi.org/10.1016/j.virs.2024.03.001 - Cao X et al., “Spike protein of SARS-CoV-2 activates macrophages and contributes to induction of
acute lung inflammation in male mice,” FASEB J. 2021, 35, e21801. doi:
https://doi.org/10.1096/fj.202002742RR - Caohuy H et al., “Inflammation in the COVID-19 airway is due to inhibition of CFTR signaling by the
SARS-CoV-2 spike protein,” Sci. Rep. 2024, 14: 16895. doi: https://doi.org/10.1038/s41598-024-
66473-4 - Chittasupho C et al., “Inhibition of SARS-CoV-2-Induced NLRP3 Inflammasome-Mediated Lung Cell
Inflammation by Triphala-Loaded Nanoparticle Targeting Spike Glycoprotein S1,”
Pharmaceutics 2024, 16, 6: 751. https://doi.org/10.3390/pharmaceutics16060751 - Chittasupho C et al., “Targeting spike glycoprotein S1 mediated by NLRP3 inflammasome machinery
and the cytokine releases in A549 lung epithelial cells by nanocurcumin,” Pharmaceuticals (Basel)
2023, 16, 6: 862. doi: https://doi.org/10.3390/ph16060862 - Del Re A et al., “Intranasal delivery of PEA-producing Lactobacillus paracasei F19 alleviates SARSCoV-
2 spike protein-induced lung injury in mice,” Transl. Med. Commun. 2024, 9, 9. doi:
https://doi.org/10.1186/s41231-024-00167-x - Forsyth CB et al., “The SARS-CoV-2 S1 spike protein promotes MAPK and NF-kB activation in human
lung cells and inflammatory cytokine production in human lung and intestinal epithelial
cells,” Microorganisms 2022, 10, 10: 1996. doi: https://doi.org/10.3390/microorganisms10101996 - Fraser ME at al., “SARS-CoV-2 Spike Protein and Viral RNA Persist in the Lung of Patients With Post-
COVID Lung Disease (abstract),” Am J Respir Crit Care Med 2024, 209: A4193. doi:
https://doi.org/10.1164/ajrccm-conference.2024.209.1_MeetingAbstracts.A4193 - Greenberger JS et al., “SARS-CoV-2 Spike Protein Induces Oxidative Stress and Senescence in Mouse
and Human Lung,” In Vivo 2024, 38, 4: 1546-1556; doi: https://doi.org/10.21873/invivo.13605 - Jana S et al., “Cell-free hemoglobin does not attenuate the ebects of SARS-CoV-2 spike protein S1
subunit in pulmonary endothelial cells,” Int. J. Mol. Sci. 2021, 22, 16: 9041. doi:
https://doi.org/10.3390/ijms22169041 - Kulkoviene G et al., “Diberential Mitochondrial, Oxidative Stress and Inflammatory Responses to
SARS-CoV-2 Spike Protein Receptor Binding Domain in Human Lung Microvascular, Coronary Artery
Endothelial and Bronchial Epithelial Cells,” Int. J. Mol. Sci. 2024, 25, 6: 3188.
doi: https://doi.org/10.3390/ijms25063188 - Liang S et al., “SARS-CoV-2 spike protein induces IL-18-mediated cardiopulmonary inflammation via
reduced mitophagy,” Signal Transduct Target Ther 2023, 8, 103. doi: https://doi.org/10.1038/s41392-
023-01368-w - Liu T et al., “RS-5645 attenuates inflammatory cytokine storm induced by SARS-CoV-2 spike protein
and LPS by modulating pulmonary microbiota,” Int J Biol Sci. 2021, 17, 13: 3305–3319.
doi: 10.7150/ijbs.63329 - Palestra F et al. “SARS-CoV-2 Spike Protein Activates Human Lung Macrophages,” Int. J. Mol.
Sci. 2023, 24, 3: 3036. doi: https://doi.org/10.3390/ijms24033036 - Park C et al., “Murine alveolar Macrophages Rapidly Accumulate intranasally Administered SARSCoV-
2 Spike Protein leading to neutrophil Recruitment and Damage,” Elife 2024, 12: RP86764. doi:
https://doi.org/10.7554/eLife.86764.3 - Puthia MTL et al., “Experimental model of pulmonary inflammation induced by SARS-CoV-2 spike
protein and endotoxin,” ACS Pharmacol Transl Sci. 2022, 5, 3: 141–8. doi:
https://doi.org/10.1021/acsptsci.1c00219 - Rahman M et al., “Diberential Ebect of SARS-CoV-2 Spike Glycoprotein 1 on Human Bronchial and
Alveolar Lung Mucosa Models: Implications for Pathogenicity,” Viruses 2021, 13, 12: 2537. doi:
https://doi.org/10.3390/v13122537 - Ruben ML et al., “The SARS-CoV-2 spike protein subunit S1 induces COVID-19-like acute lung injury
in Κ18-hACE2 transgenic mice and barrier dysfunction in human endothelial cells,” Am J Physiol Lung
Cell Mol Physiol. 2021, 321, 2: L477-L484. doi: https://doi.org/10.1152/ajplung.00223.2021 - Segura-Villalobos D et al., “Jacareubin inhibits TLR4-induced lung inflammatory response caused by
the RBD domain of SARS-CoV-2 Spike protein,” Pharmacol. Rep. 2022, 74: 1315–1325. doi:
https://doi.org/10.1007/s43440-022-00398-5 - Semmarath W et al., “Cyanidin-3-O-glucoside and Peonidin-3-O-glucoside-Rich Fraction of Black
Rice Germ and Bran Suppresses Inflammatory Responses from SARS-CoV-2 Spike Glycoprotein S1-
Induction In Vitro in A549 Lung Cells and THP-1 Macrophages via Inhibition of the NLRP3
Inflammasome Pathway,” Nutrients 2022, 14, 13: 2738. doi: https://doi.org/10.3390/nu14132738 - Sirsendu J et al., “Cell-Free Hemoglobin Does Not Attenuate the Ebects of SARS-CoV-2 Spike Protein
S1 Subunit in Pulmonary Endothelial Cells,” Int. J. Mol. Sci. 2021, 22, 16: 9041. doi:
https://doi.org/10.3390/ijms22169041 - Sui Y et al., “SARS-CoV-2 Spike Protein Suppresses ACE2 and Type I Interferon Expression in Primary
Cells From Macaque Lung Bronchoalveolar Lavage,” Front. Immunol. 2021, 12. doi:
https://doi.org/10.3389/fimmu.2021.658428 - Sung PS et al., “CLEC5A and TLR2 Are Critical in SARS-CoV-2-Induced NET Formation and Lung
Inflammation,” J. Biomed. Sci. 2022, 29, 52. doi: https://doi.org/10.1186/s12929-022-00832-z - Suzuki YJ et al., “SARS-CoV-2 spike protein-mediated cell signaling in lung vascular cells,” Vascul.
Pharmacol. 2021, 137: 106823. doi: https://doi.org/10.1016/j.vph.2020.106823 - Yeung-Luk BH et al., “SARS-CoV-2 infection alters mitochondrial and cytoskeletal function in human
respiratory epithelial cells mediated by expression of spike protein,” mBio 2023, 14, 4: e00820-23.
doi: https://doi.org/10.1128/mbio.00820-23 - Zekri-Nechar K et al., “Spike Protein Subunits of SARS-CoV-2 Alter Mitochondrial Metabolism in
Human Pulmonary Microvascular Endothelial Cells: Involvement of Factor Xa,” Dis. Markers 2022,doi: https://doi.org/10.1155/2022/1118195
CC. Renin-Angiotensin-Aldosterone System
- Burnett FN et al., “SARS-CoV-2 Spike Protein Intensifies Cerebrovascular Complications in Diabetic
hACE2 Mice through RAAS and TLR Signaling Activation,” Int. J. Mol. Sci. 2023, 24, 22: 16394.
doi: https://doi.org/10.3390/ijms242216394 - Lehmann KJ, “SARS-CoV-2-Spike Interactions with the Renin-Angiotensin-Aldosterone System –
Consequences of Adverse Reactions of Vaccination,” J Biol Today’s World 2023, 12/4: 001-013. doi:
https://doi.org/10.31219/osf.io/27g5h - Matsuzawa Y et al., “Impact of Renin–Angiotensin–Aldosterone System Inhibitors on COVID-19,”
Hypertens. Res. 2022, 45, 7: 1147–1153, doi: https://doi.org/10.1038/s41440-022-00922-3
DD. Senescence/aging
- Duarte C, “Age-dependent ebects of the recombinant spike protein/SARS-CoV-2 on the M-CSF- and
IL-34-diberentiated macrophages in vitro,” Biochem. Biophys. Res. Commun. 2021, 546: 97–102. doi:
https://doi.org/10.1016/j.bbrc.2021.01.104 - Greenberger JS et al., “SARS-CoV-2 Spike Protein Induces Oxidative Stress and Senescence in Mouse
and Human Lung,” In Vivo 2024, 38, 4: 1546-1556. doi: https://doi.org/10.21873/invivo.13605 - Meyer K et al., “SARS-CoV-2 Spike Protein Induces Paracrine Senescence and Leukocyte Adhesion in
Endothelial Cells,” J. Virol. 2021, 95, e0079421. doi: https://doi.org/10.1128/jvi.00794-21
EE. Stem cells
- Balzanelli MG et al., “The Role of SARS-CoV-2 Spike Protein in Long-term Damage of Tissues and
Organs, the Underestimated Role of Retrotransposons and Stem Cells, a Working Hypothesis,”
Endocr Metab Immune Disord Drug Targets 2025, 25, 2: 85-98. doi:
10.2174/0118715303283480240227113401 - Kucia M et al. “An evidence that SARS-Cov-2/COVID-19 spike protein (SP) damages hematopoietic
stem/progenitor cells in the mechanism of pyroptosis in Nlrp3 inflammasome-dependent
manner,” Leukemia 2021, 35: 3026-3029. doi: https://doi.org/10.1038/s41375-021-01332-z - Ropa J et al., “Human Hematopoietic Stem, Progenitor, and Immune Cells Respond Ex Vivo to SARSCoV-2 Spike Protein,” Stem Cell Rev Rep. 2021, 17, 1: 253-265. doi: https://doi.org/10.1007/s12015-020-10056-z
FF. Syncytia/cell fusion
- Braga L et al., “Drugs that inhibit TMEM16 proteins block SARS-CoV-2 spike-induced syncytia,”
Nature 2021, 594: 88–93. doi: https://doi.org/10.1038/s41586-021-03491-6 - Cattin-Ortolá J et al., “Sequences in the cytoplasmic tail of SARS-CoV-2 Spike facilitate expression at
the cell surface and syncytia formation,” Nat Commun 2021, 12, 1: 5333. doi:
https://doi.org/10.1038/s41467-021-25589-1 - Clemens DJ et al., “SARS-CoV-2 spike protein-mediated cardiomyocyte fusion may contribute to
increased arrhythmic risk in COVID-19,” PLoS One 2023, 18, 3: e0282151.
doi: https://doi.org/10.1371/journal.pone.0282151 - Lazebnik Y, “Cell fusion as a link between the SARS-CoV-2 spike protein, COVID-19 complications,
and vaccine side ebects,” Oncotarget 2021, 12, 25: 2476-2488. doi:
https://doi.org/10.18632/oncotarget.28088 - Liu X et al., “SARS-CoV-2 spike protein-induced cell fusion activates the cGAS-STING pathway and
the interferon response,” Sci Signal. 2022, 15, 729: eabg8744. doi: 10.1126/scisignal.abg8744 - Martinez-Marmol R et al., “SARS-CoV-2 infection and viral fusogens cause neuronal and glial fusion
that compromises neuronal activity,” Sci. Adv. 2023, 9, 23. doi: 10.1126/sciadv.adg2248 - Rajah MM et al., “SARS-CoV-2 Alpha, Beta, and Delta variants display enhanced spike-mediated
syncytia formation,” EMBO J. 2021, 40: e108944. doi: https://doi.org/10.15252/embj.2021108944 - Shirato K and Takako Kizaki, “SARS-CoV-2 Spike Protein S1 Subunit Induces Pro- inflammatory
Responses via Toll-Like Receptor 4 Signaling in Murine and Human Macrophages,” Heliyon 2021, 7, 2:
e06187. doi: https://doi.org/10.1016/j.heliyon.2021.e06187 - Theuerkauf SA et al., “Quantitative assays reveal cell fusion at minimal levels of SARS-CoV-2 spike
protein and fusion from without,” iScience 2021, 24, 3: 102170.
doi: https://doi.org/10.1016/j.isci.2021.102170 - Zhang Z et al., “SARS-CoV-2 spike protein dictates syncytium-mediated lymphocyte
elimination,” Cell Death Di^er. 2021, 28: 2765–2777. doi: https://doi.org/10.1038/s41418-021-00782-
3
GG. Therapeutics
- Almehdi AM et al., “SARS-CoV-2 Spike Protein: Pathogenesis, Vaccines, and Potential Therapies,”
Infection 2021, 49, 5: 855–876. doi: https://doi.org/10.1007/s15010-021-01677-8 - Boretti A, “PQQ Supplementation and SARS-CoV-2 Spike Protein-Induced Heart Inflammation,” Nat.
Prod. Commun. 2022, 17, 1934578×221080929. doi: https://doi.org/10.1177/1934578X221080929 - Boschi C et al., “SARS-CoV-2 Spike Protein Induces Hemagglutination: Implications for COVID-19
Morbidities and Therapeutics and for Vaccine Adverse Ebects,” Int. J. Biol. Macromol. 2022, 23, 24:doi: https://doi.org/10.3390/ijms232415480 - Braga L et al., “Drugs that inhibit TMEM16 proteins block SARS-CoV-2 spike-induced syncytia,”
Nature 2021, 594: 88–93. doi: https://doi.org/10.1038/s41586-021-03491-6 - Chang MH et al., “SARS-CoV-2 Spike Protein 1 Causes Aggregation of α-Synuclein via Microglia-
Induced Inflammation and Production of Mitochondrial ROS: Potential Therapeutic Applications of
Metformin,” Biomedicines 2024, 12, 6: 1223. doi: https://doi.org/10.3390/biomedicines12061223 - Chittasupho C et al., “Inhibition of SARS-CoV-2-Induced NLRP3 Inflammasome-Mediated Lung Cell
Inflammation by Triphala-Loaded Nanoparticle Targeting Spike Glycoprotein S1,”
Pharmaceutics 2024, 16, 6: 751. doi: https://doi.org/10.3390/pharmaceutics16060751 - Chittasupho C et al., “Targeting spike glycoprotein S1 mediated by NLRP3 inflammasome machinery
and the cytokine releases in A549 lung epithelial cells by nanocurcumin,” Pharmaceuticals (Basel)
2023, 16, 6: 862. doi: https://doi.org/10.3390/ph16060862 - Corpetti C et al., “Cannabidiol inhibits SARS-Cov-2 spike (S) protein-induced cytotoxicity and
inflammation through a PPARγ-dependent TLR4/NLRP3/Caspase-1 signaling suppression in Caco-2
cell line,” Phytother. Res. 2021, 35, 12: 6893–6903. doi: https://doi.org/10.1002/ptr.7302 - Cory TJ et al., “Metformin Suppresses Monocyte Immunometabolic Activation by SARS-CoV-2 Spike
Protein Subunit 1,” Front. Immunol. 2021, 12 (Sec. Cytokines and Soluble Mediators in Immunity):doi: https://doi.org/10.3389/fimmu.2021.733921 - Del Re A et al., “Intranasal delivery of PEA-producing Lactobacillus paracasei F19 alleviates SARSCoV-
2 spike protein-induced lung injury in mice,” Transl. Med. Commun. 2024, 9, 9. doi:
https://doi.org/10.1186/s41231-024-00167-x - Del Re A et al., “Ultramicronized Palmitoylethanolamide Inhibits NLRP3 Inflammasome Expression
and Pro-Inflammatory Response Activated by SARS-CoV-2 Spike Protein in Cultured Murine Alveolar
Macrophages,” Metabolites 2021, 11, 9: 592. doi: https://doi.org/10.3390/metabo11090592 - Ferrer MD et al., “Nitrite Attenuates the In Vitro Inflammatory Response of Immune Cells to the
SARS-CoV-2 S Protein without Interfering in the Antioxidant Enzyme Activation,” Int. J. Mol.
Sci. 2024, 25, 5: 3001. https://doi.org/10.3390/ijms25053001 - Frank MG et al., “SARS-CoV-2 S1 subunit produces a protracted priming of the neuroinflammatory,
physiological, and behavioral responses to a remote immune challenge: A role for corticosteroids,”
Brain Behav. Immun. 2024, 121: 87-103. doi: https://doi.org/10.1016/j.bbi.2024.07.034 - Frühbeck G et al., “FNDC4 and FNDC5 reduce SARS-CoV-2 entry points and spike glycoprotein S1-
induced pyroptosis, apoptosis, and necroptosis in human adipocytes,” Cell Mol Immunol. 2021, 18,
10: 2457–9. doi: https://doi.org/10.1038/s41423-021-00762-0 - Gasparello J et al., “Sulforaphane inhibits the expression of interleukin-6 and interleukin-8 induced in
bronchial epithelial IB3-1 cells by exposure to the SARS-CoV-2 Spike protein,” Phytomedicine 2021,
87: 153583. doi: https://doi.org/10.1016/j.phymed.2021.153583 - Halma MTJ et al., “Exploring autophagy in treating SARS-CoV-2 spike protein-related pathology,”
Endocrinol Metab (EnM) 2024, 14: 100163. doi: https://doi.org/10.1016/j.endmts.2024.100163 - Halma MTJ et al., “Strategies for the Management of Spike Protein-Related Pathology,”
Microorganisms 2023, 11, 5: 1308. doi: https://doi.org/10.3390/microorganisms11051308 - Jana S et al., “Cell-free hemoglobin does not attenuate the ebects of SARS-CoV-2 spike protein S1
subunit in pulmonary endothelial cells,” Int. J. Mol. Sci. 2021, 22, 16: 9041. doi:
https://doi.org/10.3390/ijms22169041 - Jugler C et al., “SARS-CoV-2 Spike Protein-Induced Interleukin 6 Signaling Is Blocked by a Plant-
Produced Anti-Interleukin 6 Receptor Monoclonal Antibody,” Vaccines 2021, 9, 11: 1365.
doi: https://doi.org/10.3390/vaccines9111365 - Ken W et al., “Low dose radiation therapy attenuates ACE2 depression and inflammatory cytokines
induction by COVID-19 viral spike protein in human bronchial epithelial cells,” Int J Radiat Biol. 2022,
98, 10:1532-1541. doi: https://doi.org/10.1080/09553002.2022.2055806 - Kumar N et al., “SARS-CoV-2 spike protein S1-mediated endothelial injury and pro-inflammatory
state Is amplified by dihydrotestosterone and prevented by mineralocorticoid
antagonism,” Viruses 2021, 13, 11: 2209. doi: https://doi.org/10.3390/v13112209 - Liu T et al., “RS-5645 attenuates inflammatory cytokine storm induced by SARS-CoV-2 spike protein
and LPS by modulating pulmonary microbiota,” Int J Biol Sci. 2021, 17, 13: 3305–3319.
doi: 10.7150/ijbs.63329 - Loh D, “The potential of melatonin in the prevention and attenuation of oxidative hemolysis and
myocardial injury from cd147 SARS-CoV-2 spike protein receptor binding,” Melatonin Research 2020,
3, 3: 380-416. doi: https://doi.org/10.32794/mr11250069 - Loh JT et al., “Dok3 restrains neutrophil production of calprotectin during TLR4 sensing of SARS-CoV-2 spike protein,” Front. Immunol. 2022, 13 (Sec. Molecular Innate Immunity). doi:
https://doi.org/10.3389/fimmu.2022.996637 - Marrone L et al., “Tirofiban prevents the ebects of SARS-CoV-2 spike protein on macrophage
activation and endothelial cell death,” Heliyon 2024, 10, 15: e35341. doi:
10.1016/j.heliyon.2024.e35341 - Norris B et al., “Evaluation of Glutathione in Spike Protein of SARS-CoV-2 Induced
Immunothrombosis and Cytokine Dysregulation,” Antioxidants 2024, 13, 3: 271.
doi: https://doi.org/10.3390/antiox13030271 - Oka N et al., “SARS-CoV-2 S1 protein causes brain inflammation by reducing intracerebral
acetylcholine production,” iScience 2023, 26, 6: 106954. doi: 10.1016/j.isci.2023.106954 - Olajide OA et al., “Induction of Exaggerated Cytokine Production in Human Peripheral Blood
Mononuclear Cells by a Recombinant SARS-CoV-2 Spike Glycoprotein S1 and Its Inhibition by
Dexamethasone,” Inflammation 2021, 44: 1865–1877. doi: https://doi.org/10.1007/s10753-021-
01464-5 - Petrosino S and N Matende, “Elimination/Neutralization of COVID-19 Vaccine-Produced Spike
Protein: Scoping Review,” Mathews Journal of Nutrition & Dietetics 2024, 7, 2. doi:
https://doi.org/10.30654/MJND.10034 - Satta S et al., “An engineered nano-liposome-human ACE2 decoy neutralizes SARS-CoV-2 Spike
protein-induced inflammation in both murine and human macrophages,” Theranostics 2022, 12, 6:
2639–2657. doi: 10.7150/thno.66831 - Segura-Villalobos D et al., “Jacareubin inhibits TLR4-induced lung inflammatory response caused by
the RBD domain of SARS-CoV-2 Spike protein,” Pharmacol. Rep. 2022, 74: 1315–1325. doi:
https://doi.org/10.1007/s43440-022-00398-5 - Semmarath W et al., “Cyanidin-3-O-glucoside and Peonidin-3-O-glucoside-Rich Fraction of Black
Rice Germ and Bran Suppresses Inflammatory Responses from SARS-CoV-2 Spike Glycoprotein S1-
Induction In Vitro in A549 Lung Cells and THP-1 Macrophages via Inhibition of the NLRP3
Inflammasome Pathway,” Nutrients 2022, 14, 13: 2738. doi: https://doi.org/10.3390/nu14132738 - Suprewicz L et al., “Recombinant human plasma gelsolin reverses increased permeability of the
blood-brain barrier induced by the spike protein of the SARS-CoV-2 virus,” J Neuroinflammation 2022, 19, 1: 282. doi: https://doi.org/10.1186/s12974-022-02642-4 - Vargas-Castro R et al., “Calcitriol prevents SARS-CoV spike-induced inflammation in human
trophoblasts through downregulating ACE2 and TMPRSS2 expression,” J Steroid Biochem Mol
Biol 2025, 245: 106625. doi: https://doi.org/10.1016/j.jsbmb.2024.106625 - Visvabharathy L et al., “Case report: Treatment of long COVID with a SARS-CoV-2 antiviral and IL-6
blockade in a patient with rheumatoid arthritis and SARS-CoV-2 antigen persistence,” Front. Med.
2022, 9 (Sec. Infectious Diseases – Surveillance). doi: https://doi.org/10.3389/fmed.2022.1003103 - Yonker LM et al., “Multisystem inflammatory syndrome in children is driven by zonulin-dependent
loss of gut mucosal barrier,” J Clin Invest. 2021, 131, 14: e149633. doi:
https://doi.org/10.1172/JCI149633 - Youn JY et al., “Therapeutic application of estrogen for COVID-19: Attenuation of SARS-CoV-2 spike
protein and IL-6 stimulated, ACE2-dependent NOX2 activation, ROS production and MCP-1
upregulation in endothelial cells,” Redox Biol. 2021, 46: 102099. doi:
https://doi.org/10.1016/j.redox.2021.102099 - Yu J et al., “Direct activation of the alternative complement pathway by SARS-CoV-2 spike proteins is
blocked by factor D inhibition,” Blood 2020, 136, 18: 2080–2089. doi:
https://doi.org/10.1182/blood.2020008248
HH. Toll-like receptors (TLRs)
- Aboudounya MM and RJ Heads, “COVID-19 and Toll-Like Receptor 4 (TLR4): SARS-CoV-2 May Bind
and Activate TLR4 to Increase ACE2 Expression, Facilitating Entry and Causing Hyperinflammation,”
Mediators Inflamm. 2021: 8874339. doi: https://doi.org/10.1155/2021/8874339 - Burnett FN et al., “SARS-CoV-2 Spike Protein Intensifies Cerebrovascular Complications in Diabetic
hACE2 Mice through RAAS and TLR Signaling Activation,” Int. J. Mol. Sci. 2023, 24, 22: 16394.
doi: https://doi.org/10.3390/ijms242216394 - Carnevale R et al., “Toll-Like Receptor 4-Dependent Platelet-Related Thrombosis in SARS-CoV-2
Infection,” Circ. Res. 2023, 132, 3: 290– 305. doi: https://doi.org/10.1161/CIRCRESAHA.122.321541 - Corpetti C et al., “Cannabidiol inhibits SARS-Cov-2 spike (S) protein-induced cytotoxicity and
inflammation through a PPARγ-dependent TLR4/NLRP3/Caspase-1 signaling suppression in Caco-2
cell line,” Phytother. Res. 2021, 35, 12: 6893–6903. doi: https://doi.org/10.1002/ptr.7302 - Fontes-Dantas FL, “SARS-CoV-2 Spike Protein Induces TLR4-Mediated Long- Term Cognitive
Dysfunction Recapitulating Post-COVID-19 Syndrome in Mice,” Cell Reports 2023, 42, 3: 112189, doi:
https://doi.org/10.1016/j.celrep.2023.112189 - Khan S et al., “SARS-CoV-2 Spike Protein Induces Inflammation via TLR2-Dependent Activation of the
NF-κB Pathway,” eLife 2021, 10: e68563. doi: https://doi.org/10.7554/elife.68563 - Kim MJ et al., “The SARS-CoV-2 spike protein induces lung cancer migration and invasion in a TLR2-
dependent manner,” Cancer Commun (London) 2023, 44, 2: 273–277.
doi: https://doi.org/10.1002/cac2.12485 - Kircheis R and O Planz, “Could a Lower Toll-like Receptor (TLR) and NF-κB Activation Due to a
Changed Charge Distribution in the Spike Protein Be the Reason for the Lower Pathogenicity of
Omicron?” Int. J. Mol. Sci. 2022, 23, 11: 5966. doi: https://doi.org/10.3390/ijms23115966 - Loh JT et al., “Dok3 restrains neutrophil production of calprotectin during TLR4 sensing of SARS-CoV-
2 spike protein,” Front. Immunol. 2022, 13 (Sec. Molecular Innate Immunity). doi:
https://doi.org/10.3389/fimmu.2022.996637 - Segura-Villalobos D et al., “Jacareubin inhibits TLR4-induced lung inflammatory response caused by
the RBD domain of SARS-CoV-2 Spike protein,” Pharmacol. Rep. 2022, 74: 1315–1325. doi:
https://doi.org/10.1007/s43440-022-00398-5 - Sirsendu J et al., “Cell-Free Hemoglobin Does Not Attenuate the Ebects of SARS-CoV-2 Spike Protein
S1 Subunit in Pulmonary Endothelial Cells,” Int. J. Mol. Sci., 2021, 22, 16: 9041. doi:
https://doi.org/10.3390/ijms22169041 - Sung PS et al., “CLEC5A and TLR2 Are Critical in SARS-CoV-2-Induced NET Formation and Lung
Inflammation,” J. Biomed. Sci. 2022, 29, 52. doi: https://doi.org/10.1186/s12929-022-00832-z - Zaki H and S Khan, “SARS-CoV-2 spike protein induces inflammatory molecules through TLR2 in
macrophages and monocytes,” J. Immunol. 2021, 206 (1_supplement): 62.07. doi:
https://doi.org/10.4049/jimmunol.206.Supp.62.07 - Zaki H and S Khan, “TLR2 senses spike protein of SARS-CoV-2 to trigger inflammation,” J.
Immunol. 2022, 208 (1_Supplement): 125.30. doi:
https://doi.org/10.4049/jimmunol.208.Supp.125.30 - Zhao Y et al., “SARS-CoV-2 spike protein interacts with and activates TLR4,” Cell Res. 2021, 31: 818–doi: https://doi.org/10.1038/s41422-021-00495-9
Listado Completo
- Abdi A et al., “Biomed Interaction of SARS-CoV-2 with cardiomyocytes: Insight into the underlying molecular mechanisms of cardiac injury and pharmacotherapy,” Pharmacother. 2022, 146: doi: 10.1016/j.biopha.2021.112518
- Aboudounya MM and RJ Heads, “COVID-19 and Toll-Like Receptor 4 (TLR4): SARS-CoV-2 May Bind and Activate TLR4 to Increase ACE2 Expression, Facilitating Entry and Causing Hyperinflammation,” Mediators Inflamm. 2021, 8874339. doi:
https://doi.org/10.1155/2021/8874339 - Acevedo-Whitehouse K and R Bruno, “Potential health risks of mRNA-based vaccine therapy: A hypothesis,” Med. Hypotheses 2023, 171: 111015. doi:
https://doi.org/10.1016/j.mehy.2023.111015 - Ahn WM et al., “SARS-CoV-2 Spike Protein Stimulates Macropinocytosis in Murine and Human Macrophages via PKC-NADPH Oxidase Signaling,” Antioxidants 2024, 13, 2: 175.
doi: https://doi.org/10.3390/antiox13020175 - Ait-Belkacem I et al., “SARS-CoV-2 spike protein induces a diberential monocyte activation that may contribute to age bias in COVID-19 severity,” Sci. Rep. 2022, 12: 20824. doi: https://doi.org/10.1038/s41598-022-25259-2
- Aksenova AY et al., “The increased amyloidogenicity of Spike RBD and pH-dependent binding to ACE2 may contribute to the transmissibility and pathogenic properties of SARS-CoV-2 omicron as suggested by in silico study,” Int. J. Mol. Sci. 2022, 23, 21: 13502. doi: https://doi.org/10.3390/ijms232113502
- Al-Kuraishy HM et al., “Changes in the Blood Viscosity in Patients With SARS-CoV-2 Infection,” Front. Med. 2022, 9: 876017. doi: 10.3389/fmed.2022.876017
- Al-Kuraishy HM et al., “Hemolytic anemia in COVID-19,” Ann. Hematol. 2022, 101: 1887–1895. doi: 10.1007/s00277-022-04907-7
- Albornoz EA et al., “SARS-CoV-2 drives NLRP3 inflammasome activation in human microglia through spike protein,” Mol. Psychiatr. 2023, 28: 2878–2893. doi: https://doi.org/10.1038/s41380-022-01831-0
- Almehdi AM et al., “SARS-CoV-2 Spike Protein: Pathogenesis, Vaccines, and Potential Therapies,” Infection 2021, 49, 5: 855–876. doi: https://doi.org/10.1007/s15010-021-01677-8
- Angeli F et al., “COVID-19, vaccines and deficiency of ACE2 and other angiotensinases. Closing the loop on the ‘Spike ebect’,” Eur J. Intern. Med. 2022, 103: 23–28. doi:10.1016/j.ejim.2022.06.015
- Angeli F et al., “The spike ebect of acute respiratory syndrome coronavirus 2 and coronavirus
disease 2019 vaccines on blood pressure,” Eur. J. Intern. Med. 2022, 109: 12-21. doi:
10.1016/j.ejim.2022.12.004 - Ao Z et al., “SARS-CoV-2 Delta spike protein enhances the viral fusogenicity and inflammatory
cytokine production,” iScience 2022, 25, 8: 104759. doi: 10.1016/j.isci.2022.104759 - Appelbaum K et al., “SARS-CoV-2 spike-dependent platelet activation in COVID-19 vaccineinduced
thrombocytopenia,” Blood Adv. 2022, 6: 2250–2253. doi:
10.1182/bloodadvances.2021005050 - Arjsri P et al., “Hesperetin from root extract of Clerodendrum petasites S. Moore inhibits SARSCoV-
2 spike protein S1 subunit-induced Nlrp3 inflammasome in A549 lung cells via modulation of
the Akt/Mapk/Ap-1 pathway,” Int. J. Mol. Sci. 2022, 23, 18: 10346. doi:
https://doi.org/10.3390/ijms231810346 - Asandei A et al., “Non-Receptor-Mediated Lipid Membrane Permeabilization by the SARS-CoV-2
Spike Protein S1 Subunit,” ACS Appl. Mater. Interfaces 2020, 12, 50: 55649–55658. doi:
https://doi.org/10.1021/acsami.0c17044 - Avolio E et al., “The SARS-CoV-2 Spike Protein Disrupts Human Cardiac Pericytes Function
through CD147 Receptor-Mediated Signalling: A Potential Non-infective Mechanism of COVID-19
Microvascular Disease,” Clin. Sci. 2021, 135, 24: 2667–2689, doi:
https://doi.org/10.1042/CS20210735 - Baldari CT et al., “Emerging Roles of SARS-CoV-2 Spike-ACE2 in Immune Evasion and
Pathogenesis,” Trends Immunol. 2023, 44, 6. doi: https://doi.org/10.1016/j.it.2023.04.001 - Balzanelli MG et al., “The Role of SARS-CoV-2 Spike Protein in Long-term Damage of Tissues and
Organs, the Underestimated Role of Retrotransposons and Stem Cells, a Working Hypothesis,”
Endocr Metab Immune Disord Drug Targets 2025, 25, 2: 85-98. doi:
10.2174/0118715303283480240227113401 - Bansal S et al., “Cutting Edge: Circulating Exosomes with COVID Spike Protein Are Induced by
BNT162b2 (Pfizer-BioNTech) Vaccination prior to Development of Antibodies: A Novel Mechanism
for Immune Activation by mRNA Vaccines,” J. Immunol. 2021, 207, 10: 2405–2410. doi:
https://doi.org/10.4049/jimmunol.2100637 - Barhoumi T et al., “SARS-CoV-2 coronavirus Spike protein-induced apoptosis, inflammatory, and
oxidative stress responses in THP-1-like-macrophages: potential role of angiotensin-converting
enzyme inhibitor (perindopril),” Front Immunol. 2021, 12: 728896. doi:
https://doi.org/10.3389/fimmu.2021.728896 - Barreda D et al., “SARS-CoV-2 Spike Protein and Its Receptor Binding Domain Promote a
Proinflammatory Activation Profile on Human Dendritic Cells,” Cells 2021, 10, 12: 3279. doi:
https://doi.org/10.3390/cells10123279 - Baumeier C et al., “Intramyocardial Inflammation after COVID-19 Vaccination: An
Endomyocardial Biopsy-Proven Case Series,” Int. J. Mol. Sci. 2022, 23: 6940. doi:
https://doi.org/10.3390/ijms23136940 - Bellavite P et al., “Immune response and molecular mechanisms of cardiovascular adverse
ebects of spike proteins from SARS-coV-2 and mRNA vaccines,” Biomedicines 2023, 11, 2: 451.
doi: https://doi.org/10.3390/biomedicines11020451 - Bellucci M et al., “Post-SARS-CoV-2 infection and post-vaccine-related neurological
complications share clinical features and the same positivity to anti-ACE2 antibodies,” Front.
Immunol. 2024, 15 (Sec. Multiple Sclerosis and Neuroimmunology). doi:
https://doi.org/10.3389/fimmu.2024.1398028 - Bhargavan B and GD Kanmogne, “SARS-CoV-2 spike proteins and cell–cell communication
inhibits TFPI and induces thrombogenic factors in human lung microvascular endothelial cells
and neutrophils: implications for COVID-19 coagulopathy pathogenesis,” Int. J. Mol. Sci. 2022, 23,
18: 10436. doi: https://doi.org/10.3390/ijms231810436 - Bhattacharyya S and JK Tobacman, “SARS-CoV-2 spike protein-ACE2 interaction increases
carbohydrate sulfotransferases and reduces N-acetylgalactosamine-4-sulfatase by p38 MAPK,”
Signal Transduct Target Ther 2024, 9, 39. doi: https://doi.org/10.1038/s41392-024-01741-3 - Biancatelli RMLC et al., “The SARS-CoV-2 spike protein subunit S1 induces COVID-19-like acute
lung injury in Kappa18-hACE2 transgenic mice and barrier dysfunction in human endothelial
cells,” Am. J. Physiol. Lung Cell. Mol. Physiol. 2021, 321, L477–L484. doi:
https://doi.org/10.1152/ajplung.00223.2021 - Biering SB et al., “SARS-CoV-2 Spike Triggers Barrier Dysfunction and Vascular Leak via Integrins
and TGF-β Signaling,” Nat. Commun. 2022, 13: 7630. doi: https://doi.org/10.1038/s41467-022-
34910-5 - Bocquet-Garcon A, “Impact of the SARS-CoV-2 Spike Protein on the Innate Immune System: A
Review,” Cureus 2024, 16, 3: e57008. doi: 10.7759/cureus.57008 - Boretti A, “PQQ Supplementation and SARS-CoV-2 Spike Protein-Induced Heart
Inflammation,” Nat. Prod. Commun. 2022, 17, 1934578×221080929. doi:
https://doi.org/10.1177/1934578X221080929 - Boros LG et al., “Long-lasting, biochemically modified mRNA, and its frameshifted recombinant
spike proteins in human tissues and circulation after COVID-19 vaccination,” Pharmacol Res
Perspect 2024, 12, 3: e1218. doi: https://doi.org/10.1002/prp2.1218 - Bortolotti D et al., “SARS-CoV-2 Spike 1 Protein Controls Natural Killer Cell Activation via the HLAE/
NKG2A Pathway,” Cells 2020, 9, 9: 1975. doi: https://doi.org/10.3390/cells9091975 - Boschi C et al., “SARS-CoV-2 Spike Protein Induces Hemagglutination: Implications for COVID-19
Morbidities and Therapeutics and for Vaccine Adverse Ebects,” Int. J. Biol. Macromol. 2022, 23,
24: 15480. doi: https://doi.org/10.3390/ijms232415480 - Brady M et al., “Spike protein multiorgan tropism suppressed by antibodies targeting SARS-CoV-
2,” Comm. Biol. 2021, 4, 1318. doi: https://doi.org/10.1038/s42003-021-02856-x - Braga L et al., “Drugs that inhibit TMEM16 proteins block SARS-CoV-2 spike-induced syncytia,”
Nature 2021, 594: 88–93. doi: https://doi.org/10.1038/s41586-021-03491-6 - Buoninfante A et al., “Myocarditis associated with COVID-19 vaccination,” npj Vaccines 2024, doi: https://doi.org/10.1038/s41541-024-00893-1
- Burkhardt A, “Pathology Conference: Vaccine-Induced Spike Protein Production in the Brain,
Organs etc., now Proven,” Report24.news. 2022, https://report24.news/pathologie-konferenzimpfinduzierte-spike-produktion-in-gehirn-u-a-organen-nun-erwiesen/ - Burnett FN et al., “SARS-CoV-2 Spike Protein Intensifies Cerebrovascular Complications in
Diabetic hACE2 Mice through RAAS and TLR Signaling Activation,” Int. J. Mol. Sci. 2023, 24, 22: doi: https://doi.org/10.3390/ijms242216394 - Buzhdygan TP et al., “The SARS-CoV-2 Spike Protein Alters Barrier Function in 2D Static and 3D
Microfluidic in-Vitro Models of the Human Blood-Brain Barrier,” Neurobiol. Dis. 2020, 146, 105131.
doi: https://doi.org/10.1016/j.nbd.2020.105131 - Bye AP et al., “Aberrant glycosylation of anti-SARS-CoV-2 spike IgG is a prothrombotic stimulus for
platelets,” Blood 2021, 138, 6: 1481–9. doi: https://doi.org/10.1182/blood.2021011871 - Cao JB et al., “Mast cell degranulation-triggered by SARS-CoV-2 induces tracheal-bronchial
epithelial inflammation and injury,” Virol. Sin. 2024, 39, 2: 309-318. doi:
https://doi.org/10.1016/j.virs.2024.03.001 - Cao S et al., “Spike Protein Fragments Promote Alzheimer’s Amyloidogenesis,” ACS Appl. Mater.
Interfaces 2023, 15, 34: 40317-40329. doi: https://doi.org/10.1021/acsami.3c09815 - Cao X et al., “Spike protein of SARS-CoV-2 activates macrophages and contributes to induction of
acute lung inflammation in male mice,” FASEB J. 2021, 35, e21801. doi:
https://doi.org/10.1096/fj.202002742RR - Cao X et al., “The SARS-CoV-2 spike protein induces long-term transcriptional perturbations of
mitochondrial metabolic genes, causes cardiac fibrosis, and reduces myocardial contractile in
obese mice,” Mol. Metab. 2023, 74, 101756. doi: https://doi.org/10.1016/j.molmet.2023.101756 - Caohuy H et al., “Inflammation in the COVID-19 airway is due to inhibition of CFTR signaling by
the SARS-CoV-2 spike protein,” Sci. Rep. 2024, 14: 16895. doi: https://doi.org/10.1038/s41598-
024-66473-4 - Carnevale R et al., “Toll-Like Receptor 4-Dependent Platelet-Related Thrombosis in SARS-CoV-2
Infection,” Circ. Res. 2023, 132, 3: 290– 305, doi:
https://doi.org/10.1161/CIRCRESAHA.122.321541 - Cattin-Ortolá J et al., “Sequences in the cytoplasmic tail of SARS-CoV-2 Spike facilitate
expression at the cell surface and syncytia formation,” Nat Commun 2021, 12, 1: 5333. doi:
https://doi.org/10.1038/s41467-021-25589-1 - Chang MH et al., “SARS-CoV-2 Spike Protein 1 Causes Aggregation of α-Synuclein via Microglia-
Induced Inflammation and Production of Mitochondrial ROS: Potential Therapeutic Applications
of Metformin,” Biomedicines 2024, 12, 6: 1223. doi:
https://doi.org/10.3390/biomedicines12061223 - Chaves JCS et al., “Diberential Cytokine Responses of APOE3 and APOE4 Blood–brain Barrier Cell
Types to SARS-CoV-2 Spike Proteins,” J. Neuroimmune Pharmacol. 2024, 19, 22. doi:
https://doi.org/10.1007/s11481-024-10127-9 - Cheng MH et al., “Superantigenic character of an insert unique to SARS-CoV-2 spike supported by
skewed TCR repertoire in patients with hyperinflammation,” Proc Natl Acad Sci 2020, 117: 25254–doi: https://doi.org/10.1073/pnas.201072211 - Cheung CCL et al., “Residual SARS-CoV-2 viral antigens detected in GI and hepatic tissues from
five recovered patients with COVID-19,” Gut 2022, 71, 1: 226–9. doi:
https://doi.org/10.1136/gutjnl-2021-324280 - Chiok K et al., “Proinflammatory Responses in SARS-CoV-2 and Soluble Spike Glycoprotein S1
Subunit Activated Human Macrophages,” Viruses 2023, 15, 3: 754.
doi: https://doi.org/10.3390/v15030754 - Chittasupho C et al., “Inhibition of SARS-CoV-2-Induced NLRP3 Inflammasome-Mediated Lung
Cell Inflammation by Triphala-Loaded Nanoparticle Targeting Spike Glycoprotein S1,”
Pharmaceutics 2024, 16, 6: 751. https://doi.org/10.3390/pharmaceutics16060751 - Chittasupho C et al., “Targeting spike glycoprotein S1 mediated by NLRP3 inflammasome
machinery and the cytokine releases in A549 lung epithelial cells by
nanocurcumin,” Pharmaceuticals (Basel) 2023, 16, 6: 862. doi:
https://doi.org/10.3390/ph16060862 - Choi JY et al., “SARS-CoV-2 spike S1 subunit protein-mediated increase of beta-secretase 1
(BACE1) impairs human brain vessel cells,” Biochem. Biophys. Res. Commun. 2022, 625, 20: 66- doi: https://doi.org/10.1016/j.bbrc.2022.07.113 - Clemens DJ et al., “SARS-CoV-2 spike protein-mediated cardiomyocyte fusion may contribute to
increased arrhythmic risk in COVID-19,” PLoS One 2023, 18, 3: e0282151.
doi: https://doi.org/10.1371/journal.pone.0282151 - Clough E et al., “Mitochondrial Dynamics in SARS-COV2 Spike Protein Treated Human Microglia:
Implications for Neuro-COVID,” Journal of Neuroimmune Pharmacology 2021, 16, 4: 770–784. doi:
https://doi.org/10.1007/s11481-021-10015-6 - Colmenero I et al., “SARS-CoV-2 endothelial infection causes COVID-19 chilblains:
histopathological, immunohistochemical and ultrastructural study of seven paediatric cases,” Br
J Dermatol. 2020, 183: 729-737. doi: https://doi.org/10.1111/bjd.19327/ - Coly M, et al., “Subacute monomelic radiculoplexus neuropathy following Comirnaty(c) (Pfizer-
BioNTech COVID-19) vaccination: A case report,” Revue Neurologique 2023, 179, 6: 636-639. doi:
https://doi.org/10.1016/j.neurol.2023.02.063 - Corpetti C et al., “Cannabidiol inhibits SARS-Cov-2 spike (S) protein-induced cytotoxicity and
inflammation through a PPARγ-dependent TLR4/NLRP3/Caspase-1 signaling suppression in
Caco-2 cell line,” Phytother. Res. 2021, 35, 12: 6893–6903. doi: https://doi.org/10.1002/ptr.7302 - Correa Y et al., “SARS-CoV-2 spike protein removes lipids from model membranes and interferes
with the capacity of high-density lipoprotein to exchange lipids,” J. Colloid Interface
Sci. 2021, 602: 732-739. doi: https://doi.org/10.1016/j.jcis.2021.06.056 - Cory TJ et al., “Metformin Suppresses Monocyte Immunometabolic Activation by SARS-CoV-2
Spike Protein Subunit 1,” Front. Immunol. 2021, 12 (Sec. Cytokines and Soluble Mediators in
Immunity): 733921. doi: https://doi.org/10.3389/fimmu.2021.733921 - Cosentino M and Franca Marino, “Understanding the Pharmacology of COVID- 19 mRNA
Vaccines: Playing Dice with the Spike?” Int. J. Mol. Sci. 2022, 23, 18: 10881. doi:
https://doi.org/10.3390/ijms231810881 - Cossenza LC et al., “Inhibitory ebects of SARS-CoV-2 spike protein and BNT162b2 vaccine on
erythropoietin-induced globin gene expression in erythroid precursor cells from patients with β-
thalassemia,” Exp. Hematol. 2024, 129, 104128. doi:
https://doi.org/10.1016/j.exphem.2023.11.002 - Craddock V et al., “Persistent circulation of soluble and extracellular vesicle-linked Spike protein
in individuals with postacute sequelae of COVID-19,” J Med. Virol. 2023, 95, 2: e28568. doi:
https://doi.org/10.1002/jmv.28568 - Das T et al., “N-glycosylation of the SARS-CoV-2 spike protein at Asn331 and Asn343 is involved in
spike-ACE2 binding, virus entry, and regulation of IL-6,” Microbiol. Immunol. 2024, 68, 5: 165-178.
doi: https://doi.org/10.1111/1348-0421.13121 - De Michele M et al., “Evidence of SARS-CoV-2 Spike Protein on Retrieved Thrombi from COVID-19
Patients,” Journal of Hematology Oncology 2022, 15, 108. doi: https://doi.org/10.1186/s13045-
022-01329-w - De Michele M et al., “Vaccine-induced immune thrombotic thrombocytopenia: a possible
pathogenic role of ChAdOx1 nCoV-19 vaccine-encoded soluble SARS-CoV-2 spike protein,”
Haematologica 2022, 107, 7: 1687–92. doi: https://doi.org/10.3324/haematol.2021.280180 - De Sousa PMB et al., “Fatal Myocarditis following COVID-19 mRNA Immunization: A Case Report
and Diberential Diagnosis Review,” Vaccines 2024, 12, 2: 194.
doi: https://doi.org/10.3390/vaccines12020194 - Del Re A et al., “Intranasal delivery of PEA-producing Lactobacillus paracasei F19 alleviates SARSCoV-
2 spike protein-induced lung injury in mice,” Transl. Med. Commun. 2024, 9, 9. doi:
https://doi.org/10.1186/s41231-024-00167-x - Del Re A et al., “Ultramicronized Palmitoylethanolamide Inhibits NLRP3 Inflammasome
Expression and Pro-Inflammatory Response Activated by SARS-CoV-2 Spike Protein in Cultured
Murine Alveolar Macrophages,” Metabolites 2021, 11, 9: 592. doi:
https://doi.org/10.3390/metabo11090592 - Delgado JF et al., “SARS-CoV-2 spike protein vaccine-induced immune imprinting reduces
nucleocapsid protein antibody response in SARS-CoV-2 infection,” J. Immunol. Res. 2022: doi: https://doi.org/10.1155/2022/8287087 - DeOre BJ et al., “SARS-CoV-2 Spike Protein Disrupts Blood-Brain Barrier Integrity via RhoA
Activation,” J Neuroimmune Pharmacol. 2021, 16, 4: 722-728. doi:
https://doi.org/10.1007/s11481-021-10029-0 - Devaux CA and L. Camoin-Jau, “Molecular mimicry of the viral spike in the SARS-CoV-2 vaccine
possibly triggers transient dysregulation of ACE2, leading to vascular and coagulation dysfunction
similar to SARS-CoV-2 infection,” Viruses 2023, 15, 5: 1045. doi:
https://doi.org/10.3390/v15051045 - Dissook S et al., “Luteolin-rich fraction from Perilla frutescens seed meal inhibits spike
glycoprotein S1 of SARS-CoV-2-induced NLRP3 inflammasome lung cell inflammation via
regulation of JAK1/STAT3 pathway: A potential anti-inflammatory compound against
inflammation-induced long-COVID,” Front. Med. 2023, 9: 1072056. doi:
https://doi.org/10.3389/fmed.2022.1072056 - Duarte C, “Age-dependent ebects of the recombinant spike protein/SARS-CoV-2 on the M-CSFand
IL-34-diberentiated macrophages in vitro,” Biochem. Biophys. Res. Commun. 2021, 546: 97– doi: https://doi.org/10.1016/j.bbrc.2021.01.104 - Erdogan MA, “Prenatal SARS-CoV-2 Spike Protein Exposure Induces Autism-Like Neurobehavioral
Changes in Male Neonatal Rats,” J Neuroimmune Pharmacol. 2023, 18, 4 :573-591. doi:
10.1007/s11481-023-10089-4 - Erickson MA et al., “Blood-brain barrier penetration of non-replicating SARS-CoV-2 and S1
variants of concern induce neuroinflammation which is accentuated in a mouse model of
Alzheimer’s disease,” Brain Behav Immun 2023, 109: 251-268. doi:
https://doi.org/10.1016/j.bbi.2023.01.010 - Fajloun Z et al., “SARS-CoV-2 or Vaccinal Spike Protein can Induce Mast Cell Activation Syndrome
(MCAS),” Infect Disord Drug Targets, 2025, 25, 1: e300424229561. doi:
10.2174/0118715265319896240427045026 - Ferrer MD et al., “Nitrite Attenuates the In Vitro Inflammatory Response of Immune Cells to the
SARS-CoV-2 S Protein without Interfering in the Antioxidant Enzyme Activation,” Int. J. Mol.
Sci. 2024, 25, 5: 3001. https://doi.org/10.3390/ijms25053001 - Fertig TE et al., “Beyond the injection site: identifying the cellular targets of mRNA vaccines,” J Cell
Ident 2024, 3, 1. doi: 10.47570/joci.2024.004 - Fertig TE et al., “Vaccine mRNA Can Be Detected in Blood at 15 Days Post
Vaccination,” Biomedicines 2022, 10, 7: 1538. doi:
https://doi.org/10.3390/biomedicines10071538 - Fontes-Dantas FL, “SARS-CoV-2 Spike Protein Induces TLR4-Mediated Long- Term Cognitive
Dysfunction Recapitulating Post-COVID-19 Syndrome in Mice,” Cell Reports 2023, 42, 3: 112189.
doi: https://doi.org/10.1016/j.celrep.2023.112189 - Forsyth CB et al., “The SARS-CoV-2 S1 spike protein promotes MAPK and NF-kB activation in
human lung cells and inflammatory cytokine production in human lung and intestinal epithelial
cells,” Microorganisms 2022, 10, 10: 1996.
doi: https://doi.org/10.3390/microorganisms10101996 - Forte E, “Circulating spike protein may contribute to myocarditis after COVID-19 vaccination,”
Nat. Cardiovasc. Res. 2023, 2: 100. doi: https://doi.org/10.1038/s44161-023-00222-0 - Frank MG et al., “Exploring the immunogenic properties of SARS-CoV-2 structural proteins:
PAMP:TLR signaling in the mediation of the neuroinflammatory and neurologic sequelae of
COVID-19,” Brain Behav Immun 2023, 111. doi: https://doi.org/10.1016/j.bbi.2023.04.009 - Frank MG et al., “SARS-CoV-2 Spike S1 Subunit Induces Neuroinflammatory, Microglial and
Behavioral Sickness Responses: Evidence of PAMP-Like Properties,” Brain Behav. Immun. 2022,
100: 267277. doi: https://doi.org/10.1016/j.bbi.2021.12.007 - Frank MG et al., “SARS-CoV-2 S1 subunit produces a protracted priming of the
neuroinflammatory, physiological, and behavioral responses to a remote immune challenge: A
role for corticosteroids,” Brain Behav. Immun. 2024, 121: 87-103. doi:
https://doi.org/10.1016/j.bbi.2024.07.034 - Fraser ME at al., “SARS-CoV-2 Spike Protein and Viral RNA Persist in the Lung of Patients With
Post-COVID Lung Disease (abstract),” Am J Respir Crit Care Med 2024, 209: A4193. doi:
https://doi.org/10.1164/ajrccm-conference.2024.209.1_MeetingAbstracts.A4193 - Freeborn J, “Misfolded Spike Protein Could Explain Complicated COVID-19 Symptoms,” Medical
News Today, May 26, 2022, https://www.medicalnewstoday.com/articles/misfolded-spikeprotein-
could-explain-complicated-covid-19-symptoms - Freitas RS et al., “SARS-CoV-2 Spike antagonizes innate antiviral immunity by targeting interferon
regulatory factor 3,” Front Cell Infect Microbiol. 2021, 11: 789462. doi:
https://doi.org/10.3389/fcimb.2021.789462 - Frühbeck G et al., “FNDC4 and FNDC5 reduce SARS-CoV-2 entry points and spike glycoprotein
S1-induced pyroptosis, apoptosis, and necroptosis in human adipocytes,” Cell Mol Immunol.
2021, 18, 10: 2457–9. doi: https://doi.org/10.1038/s41423-021-00762-0 - Gamblicher T et al., “SARS-CoV-2 spike protein is present in both endothelial and eccrine cells of
a chilblain-like skin lesion,” J Eur Acad Dermatol Venereol. 2020, 1, 10: e187-e189. doi:
https://doi.org/10.1111/jdv.16970 - Gao X et al., “Spike-Mediated ACE2 Down-Regulation Was Involved in the Pathogenesis of SARSCoV-
2 Infection,” Journal of Infection 2022, 85, 4: 418–427, doi: 10.1016/j.jinf.2022.06.030 - Gasparello J et al., “Sulforaphane inhibits the expression of interleukin-6 and interleukin-8
induced in bronchial epithelial IB3-1 cells by exposure to the SARS-CoV-2 Spike protein,”
Phytomedicine 2021, 87: 153583. doi: https://doi.org/10.1016/j.phymed.2021.153583 - Gawaz A et al., “SARS-CoV-2–Induced Vasculitic Skin Lesions Are Associated with Massive Spike
Protein Depositions in Autophagosomes,” J Invest Dermatol. 2024, 144, 2: 369-377.e4. doi:
https://doi.org/10.1016/j.jid.2023.07.018 - Ghazanfari D et al., “Mechanistic insights into SARS-CoV-2 spike protein induction of the
chemokine CXCL10,” Sci. Rep. 2024, 14: 11179. doi: https://doi.org/10.1038/s41598-024-61906-6 - Goh D et al., “Case report: Persistence of residual antigen and RNA of the SARS-CoV-2 virus in
tissues of two patients with long COVID,” Front. Immunol. 2022, 13 (Sec. Viral Immunology). doi:
https://doi.org/10.3389/fimmu.2022.939989 - Golob-Schwarzl N et al., “SARS-CoV-2 spike protein functionally interacts with primary human
conjunctival epithelial cells to induce a pro-inflammatory response,” Eye 2022, 36: 2353–5. doi:
https://doi.org/10.1038/s41433-022-02066-7 - Gracie NP et al., “Cellular signalling by SARS-CoV-2 spike protein,” Microbiology Australia 2024,
45, 1: 13-17. doi: https://doi.org/10.1071/MA24005 - Greenberger JS et al., “SARS-CoV-2 Spike Protein Induces Oxidative Stress and Senescence in
Mouse and Human Lung,” In Vivo 2024, 38, 4: 1546-1556; doi:
https://doi.org/10.21873/invivo.13605 - Grishma K and Das Sarma, “The Role of Coronavirus Spike Protein in Inducing Optic Neuritis in
Mice: Parallels to the SARS-CoV-2 Virus,” J Neuroophthalmol 2024, 44, 3: 319-329. Doi:
10.1097/WNO.0000000000002234 - Grobbelaar LM et al., “SARS-CoV-2 Spike Protein S1 Induces Fibrin(ogen) Resistant to Fibrinolysis:
Implications for Microclot Formation in COVID-19,” Biosicence Reports 2021, 41, 8:
BSR20210611. doi: https://doi.org/10.1042/BSR20210611 - Gu T et al., “Cytokine Signature Induced by SARS-CoV-2 Spike Protein in a Mouse Model,” Front.
Immunol. 2021 (Sec. Inflammation). doi: https://doi.org/10.3389/fimmu.2020.621441 - Guo X et al., “Regulation of proinflammatory molecules and tissue factor by SARS-CoV-2 spike
protein in human placental cells: implications for SARS-CoV-2 pathogenesis in pregnant women,”
Front Immunol 2022, 13: 876555–876555. https://doi.org/10.3389/fimmu.2022.876555 - Guo Y and V Kanamarlapudi, “Molecular Analysis of SARS-CoV-2 Spike Protein-Induced
Endothelial Cell Permeability and vWF Secretion,” Int. J. Mol. Sci. 2023, 24, 6: https://doi.org/10.3390/ijms24065664 - Gussow AB et al., “Genomic Determinants of Pathogenicity in SARS-CoV-2 and Other Human
Coronaviruses,” PNAS 2020, 117, 26: 15193–15199. doi:
https://doi.org/10.1073/pnas.2008176117 - Halma MTJ et al., “Exploring autophagy in treating SARS-CoV-2 spike protein-related pathology,”
Endocrinol Metab (EnM) 2024, 14: 100163. doi: https://doi.org/10.1016/j.endmts.2024.100163 - Halma MTJ et al., “Strategies for the Management of Spike Protein-Related Pathology,”
Microorganisms 2023, 11, 5: 1308, doi: https://doi.org/10.3390/microorganisms11051308 - Hano S et al., “A case of persistent, confluent maculopapular erythema following a COVID-19
mRNA vaccination is possibly associated with the intralesional spike protein expressed by
vascular endothelial cells and eccrine glands in the deep dermis,” J Dermatol 2023, 50, 9: 1208- doi: https://doi.org/10.1111/1346-8138.16816 - Heath SP et al., “SARS-CoV-2 Spike Protein Exacerbates Thromboembolic Cerebrovascular
Complications in Humanized ACE2 Mouse Model,” Transl Stroke Res. 2024. doi:
https://doi.org/10.1007/s12975-024-01301-5 - Heil M, “Self-DNA driven inflammation in COVID-19 and after mRNA-based vaccination: lessons
for non-COVID-19 pathologies,” Front. Immunol., 2023, 14. doi:
https://doi.org/10.3389/fimmu.2023.1259879 - Huang X et al., “Sars-Cov-2 Spike Protein-Induced Damage of hiPSC-Derived
Cardiomyocytes,” Adv. Biol. 2022, 6, 7: e2101327. doi: https://doi.org/10.1002/adbi.202101327 - Hulscher N et al., “Autopsy findings in cases of fatal COVID-19 vaccine-induced myocarditis,” ESC
Heart Failure 2024. doi: https://doi.org/10.1002/ehf2.14680 - Huynh TV et al., “Spike Protein Impairs Mitochondrial Function in Human Cardiomyocytes:
Mechanisms Underlying Cardiac Injury in COVID-19,” Cells 2023, 12, 877. doi:
https://doi.org/10.3390/cells12060877 - Huynh TV et al., “Spike Protein of SARS-CoV-2 Activates Cardiac Fibrogenesis through NLRP3
Inflammasomes and NF-κB Signaling,” Cells 2024, 13, 16: 1331:
doi: https://doi.org/10.3390/cells13161331 - Iba T and JH Levy, “The roles of platelets in COVID-19-associated coagulopathy and vaccineinduced
immune thrombotic thrombocytopenia,” Trends Cardiovasc Med. 2022, 32, 1: 1-9. doi:
https://doi.org/10.1016/j.tcm.2021.08.012 - Idrees D and Vijay Kumar, “SARS-CoV-2 Spike Protein Interactions with Amyloidogenic Proteins:
Potential Clues to Neurodegeneration,” Biochem Biophys Res Commun. 2021, 554 : 94–98, doi:
https://doi.org/10.1016/j.bbrc.2021.03.100 - Imig JD, “SARS-CoV-2 spike protein causes cardiovascular disease independent of viral infection,”
Clin Sci (Lond) 2022, 136, 6: 431–434. doi: https://doi.org/10.1042/CS20220028 - Irrgang P et al., “Class switch toward noninflammatory, spike-specific IgG4 antibodies after
repeated SARS-CoV-2 mRNA vaccination,” Sci. Immunol. 2022, 8, 79. doi:
10.1126/sciimmunol.ade2798 - Jana S et al., “Cell-free hemoglobin does not attenuate the ebects of SARS-CoV-2 spike protein S1
subunit in pulmonary endothelial cells,” Int. J. Mol. Sci. 2021, 22, 16: 9041. doi:
https://doi.org/10.3390/ijms22169041 - Jiang Q et al., “SARS-CoV-2 spike S1 protein induces microglial NLRP3-dependent
neuroinflammation and cognitive impairment in mice,” Exp. Neurol. 2025, 383: 115020. doi:
https://doi.org/10.1016/j.expneurol.2024.115020 - Johnson EL et al., “The S1 spike protein of SARS-CoV-2 upregulates the ERK/MAPK signaling
pathway in DC-SIGN-expressing THP-1 cells,” Cell Stress Chaperones 2024, 29, 2: 227-234. doi:
https://doi.org/10.1016/j.cstres.2024.03.002 - Jugler C et al, “SARS-CoV-2 Spike Protein-Induced Interleukin 6 Signaling Is Blocked by a Plant-
Produced Anti-Interleukin 6 Receptor Monoclonal Antibody,” Vaccines 2021, 9, 11: https://doi.org/10.3390/vaccines9111365 - Kammala AK et al., “In vitro mRNA-S maternal vaccination induced altered immune regulation at
the maternal-fetal interface,” Am. J. Reprod. Immunol. 2024, 91, 5: e13861. doi:
https://doi.org/10.1111/aji.13861 - Kanduc D, “From Anti-SARS-CoV-2 Immune Responses to COVID-19 via Molecular Mimicry,”
Antibodies 2020, 9, 3: 33. doi: https://doi.org/10.3390/antib9030033 - Kanduc D and Y Shoenfeld, “Molecular mimicry between SARS-CoV-2 spike glycoprotein and
mammalian proteomes: implications for the vaccine,” Immunol Res 2020, 68: 310-313. doi:
https://doi.org/10.1007/s12026-020-09152-6 - Karrow NA et al., “Maternal COVID-19 Vaccination and Its Potential Impact on Fetal and Neonatal
Development,” Vaccines 2021, 9: 1351. doi: https://doi.org/10.3390/vaccines9111351 - Karwaciak I et al., “Nucleocapsid and Spike Proteins of the Coronavirus Sars-Cov-2 Induce Il6 in
Monocytes and Macrophages—Potential Implications for Cytokine Storm
Syndrome,” Vaccines 2021, 9(1), 54: 1–10. doi: https://doi.org/10.3390/vaccines9010054 - Kato Y et al., “TRPC3-Nox2 Protein Complex Formation Increases the Risk of SARS-CoV-2 Spike
Protein-Induced Cardiomyocyte Dysfunction through ACE2 Upregulation,” Int. J. Mol.
Sci. 2023, 24, 1: 102. doi: https://doi.org/10.3390/ijms24010102 - Kawano H et al., “Fulminant Myocarditis 24 Days after Coronavirus Disease Messenger
Ribonucleic Acid Vaccination,” Intern. Med. 2022, 61, 15: 2319-2325. doi:
https://doi.org/10.2169/internalmedicine.9800-22 - Ken W et al., “Low dose radiation therapy attenuates ACE2 depression and inflammatory
cytokines induction by COVID-19 viral spike protein in human bronchial epithelial cells,” Int J
Radiat Biol. 2022, 98, 10: 1532-1541. doi: https://doi.org/10.1080/09553002.2022.2055806 - Kent SJ et al., “Blood Distribution of SARS-CoV-2 Lipid Nanoparticle mRNA Vaccine in Humans,”
ACS Nano 2024, 18, 39: 27077-27089. doi: https://doi.org/10.1021/acsnano.4c11652 - Khaddaj-Mallat R et al., “SARS-CoV-2 deregulates the vascular and immune functions of brain
pericytes via Spike protein,” Neurobiol. Dis. 2021, 161, 105561. doi:
https://doi.org/10.1016/j.nbd.2021.105561 - Khan S et al., “SARS-CoV-2 Spike Protein Induces Inflammation via TLR2-Dependent Activation of
the NF-κB Pathway,” eLife 2021, 10: e68563. doi: https://doi.org/10.7554/elife.68563 - Kim ES et al., “Spike Proteins of SARS-CoV-2 Induce Pathological Changes in Molecular Delivery
and Metabolic Function in the Brain Endothelial Cells,” Viruses, 2021, 13, 10. doi:
https://doi.org/10.3390/v13102021 - Kim MJ et al., “The SARS-CoV-2 spike protein induces lung cancer migration and invasion in a
TLR2-dependent manner,” Cancer Commun (London), 2023, 44, 2: 273–277.
doi: https://doi.org/10.1002/cac2.12485 - Kim SY et al., “Characterization of heparin and severe acute respiratory syndrome-related
coronavirus 2 (SARS-CoV-2) spike glycoprotein binding interactions,” Antivir Res. 2020, 181: doi: https://doi.org/10.1016/j.antiviral.2020.104873 - Kircheis R, “Coagulopathies after Vaccination against SARS-CoV-2 May Be Derived from a
Combined Ebect of SARS-CoV-2 Spike Protein and Adenovirus Vector-Triggered Signaling
Pathways,” Int. J. Mol. Sci. 2021, 22, 19: 10791. https://doi.org/10.3390/ijms221910791 - Kircheis R and O Planz, “Could a Lower Toll-like Receptor (TLR) and NF-κB Activation Due to a
Changed Charge Distribution in the Spike Protein Be the Reason for the Lower Pathogenicity of
Omicron?” Int. J. Mol. Sci. 2022, 23, 11: 5966. doi: https://doi.org/10.3390/ijms23115966 - Ko CJ et al., “Discordant anti-SARS-CoV-2 spike protein and RNA staining in cutaneous perniotic
lesions suggests endothelial deposition of cleaved spike protein,” J. Cutan Pathol 2021, 48, 1: 47– doi: https://doi.org/10.1111/cup.13866 - Kowarz E et al., “Vaccine-induced COVID-19 mimicry syndrome,” eLife 2022, 11: e74974.
doi: https://doi.org/10.7554/eLife.74974 - Krauson AM et al., “Duration of SARS-CoV-2 mRNA vaccine persistence and factors associated
with cardiac involvement in recently vaccinated patients,” npj Vaccines, 8, 141. doi:
https://doi.org/10.1038/s41541-023-00742-7 - Kucia M et al., “An evidence that SARS-Cov-2/COVID-19 spike protein (SP) damages
hematopoietic stem/progenitor cells in the mechanism of pyroptosis in Nlrp3 inflammasomedependent
manner,” Leukemia 2021, 35: 3026-3029. doi: https://doi.org/10.1038/s41375-021-
01332-z - Kuhn CC et al., “Direct Cryo-ET observation of platelet deformation induced by SARS-CoV-2 spike
protein,” Nat. Commun. (2023) 14, 620. doi: https://doi.org/10.1038/s41467-023-36279-5 - Kulkoviene G et al., “Diberential Mitochondrial, Oxidative Stress and Inflammatory Responses to
SARS-CoV-2 Spike Protein Receptor Binding Domain in Human Lung Microvascular, Coronary
Artery Endothelial and Bronchial Epithelial Cells,” Int. J. Mol. Sci. 2024, 25, 6: 3188.
doi: https://doi.org/10.3390/ijms25063188 - Kumar N et al., “SARS-CoV-2 spike protein S1-mediated endothelial injury and pro-inflammatory
state Is amplified by dihydrotestosterone and prevented by mineralocorticoid
antagonism,” Viruses 2021, 13, 11: 2209. Doi: https://doi.org/10.3390/v13112209 - Kyriakopoulos AM et al., “Mitogen Activated Protein Kinase (MAPK) Activation, p53, and
Autophagy Inhibition Characterize the Severe Acute Respiratory Syndrome Coronavirus 2 (SARSCoV-
2) Spike Protein Induced Neurotoxicity,” Cureus 2022, 14, 12: e32361. doi:
10.7759/cureus.32361 - Lazebnik Y, “Cell fusion as a link between the SARS-CoV-2 spike protein, COVID-19 complications,
and vaccine side ebects,” Oncotarget 2021, 12, 25: 2476-2488. doi:
https://doi.org/10.18632/oncotarget.28088 - Lehmann KJ, “Impact of SARS-CoV-2 Spikes on Safety of Spike-Based COVID-19 Vaccinations,”
Immunome Res. 2024, 20, 2: 1000267. doi: 10.35248/1745-7580.24.20.267 - Lehmann KJ, “SARS-CoV-2-Spike Interactions with the Renin-Angiotensin-Aldosterone System –
Consequences of Adverse Reactions of Vaccination,” J Biol Today’s World 2023, 12/4: 001-013.
https://doi.org/10.31219/osf.io/27g5h - Lehmann KJ, “Suspected Causes of the Specific Intolerance Profile of Spike-Based Covid-19
Vaccines,” Med. Res. Arch 2024, 12, 9. doi: 10.18103/mra.v12i9.5704 - Lei Y et al., “SARS-CoV-2 Spike Protein Impairs Endothelial Function via Downregulation of ACE 2,”
Circ. Res. 2021, 128, 9: 1323–1326. doi: https://doi.org/10.1161/CIRCRESAHA.121.318902 - Lesgard JF et al., “Toxicity of SARS-CoV-2 Spike Protein from the Virus and Produced from COVID-
19 mRNA or Adenoviral DNA Vaccines,” Arch Microbiol Immun 2023, 7, 3: 121-138. doi:
10.26502/ami.936500110 - Letarov AV et al., “Free SARS-CoV-2 Spike Protein S1 Particles May Play a Role in the Pathogenesis
of COVID-19 Infection,” Biochemistry (Moscow) 2021, 86: 257–261. doi:
https://doi.org/10.1134/S0006297921030032 - Li C. et al., “Intravenous Injection of Coronavirus Disease 2019 (COVID-19) MRNA Vaccine Can
Induce Acute Myopericarditis in Mouse Model,” Clin. Infect. Dis. 2022, 74, 11: 1933-1950. doi:
https://doi.org/10.1093/cid/ciab707 - Li F et al., “SARS-CoV-2 Spike Promotes Inflammation and Apoptosis Through Autophagy by ROSSuppressed PI3K/AKT/mTOR Signaling,” Biochim Biophys Acta BBA – Mol Basis Dis 2021, 1867: doi: https://doi.org/10.1016/j.bbadis.2021.166260
- Li K et al., “SARS-CoV-2 Spike protein promotes vWF secretion and thrombosis via endothelial
cytoskeleton-associated protein 4 (CKAP4),” Signal Transduct Targ Ther 2022, 7, 332. doi:
https://doi.org/10.1038/s41392-022-01183-9 - Li T et al., “Platelets Mediate Inflammatory Monocyte Activation by SARS-CoV-2 Spike Protein,” J.
Clin. Invest. 2022, 132, 4: e150101. doi: 10.1172/JCI150101 - Li Z et al., “SARS-CoV-2 pathogenesis in the gastrointestinal tract mediated by Spike-induced
intestinal inflammation,” Precis. Clin. Med. 2024, 7, 1: pbad034. doi:
https://doi.org/10.1093/pcmedi/pbad034 - Liang S et al., “SARS-CoV-2 spike protein induces IL-18-mediated cardiopulmonary inflammation
via reduced mitophagy,” Signal Transduct Target Ther 2023, 8, 103. doi:
https://doi.org/10.1038/s41392-023-01368-w - Lin X et al., “Transplacental transmission of the COVID-19 vaccine messenger RNA: evidence from
placental, maternal, and cord blood analyses postvaccination,” Am J Obstet Gynecol 2024, 92, 4:
e13934. doi: https://doi.org/10.1111/aji.13934 - Lin Z, “More than a key—the pathological roles of SARS-CoV-2 spike protein in COVID-19 related
cardiac injury,” Sports Med Health Sci 2023, 6, 3: 209-220.
doi: https://doi.org/10.1016/j.smhs.2023.03.004 - Liu T et al., “RS-5645 attenuates inflammatory cytokine storm induced by SARS-CoV-2 spike
protein and LPS by modulating pulmonary microbiota,” Int J Biol Sci. 2021, 17, 13: 3305–3319.
doi: 10.7150/ijbs.63329 - Liu X et al., “SARS-CoV-2 spike protein-induced cell fusion activates the cGAS-STING pathway
and the interferon response,” Sci Signal. 2022, 15, 729: eabg8744. doi: 10.1126/scisignal.abg8744 - Loh D, “The potential of melatonin in the prevention and attenuation of oxidative hemolysis and
myocardial injury from cd147 SARS-CoV-2 spike protein receptor binding,” Melatonin Research
2020, 3, 3: 380-416. doi: https://doi.org/10.32794/mr11250069 - Loh JT et al., “Dok3 restrains neutrophil production of calprotectin during TLR4 sensing of SARSCoV-
2 spike protein,” Front. Immunol. 2022, 13 (Sec. Molecular Innate Immunity). doi:
https://doi.org/10.3389/fimmu.2022.996637 - Lu J and PD Sun, “High abinity binding of SARS-CoV-2 spike protein enhances ACE2
carboxypeptidase activity,” J. Biol. Chem 2020, 295, 52: p18579-18588. doi:
10.1074/jbc.RA120.015303 - Luchini A et al., “Lipid bilayer degradation induced by SARS-CoV-2 spike protein as revealed by
neutron reflectometry,” Sci. Rep. 2021, 11: 14867. doi: https://doi.org/10.1038/s41598-021-
93996-x - Luo Y et al., “SARS-Cov-2 spike induces intestinal barrier dysfunction through the interaction
between CEACAM5 and Galectin-9,” Front. Immunol., 2024, 15. doi:
https://doi.org/10.3389/fimmu.2024.1303356 - Lykhmus O et al., “Immunization with 674–685 fragment of SARS-Cov-2 spike protein induces
neuroinflammation and impairs episodic memory of mice,” Biochem. Biophys. Res.
Commun. 2022, 622: 57–63. doi: https://doi.org/10.1016/j.bbrc.2022.07.016 - Ma G et al., “SARS-CoV-2 Spike protein S2 subunit modulates γ-secretase and enhances amyloid-
β production in COVID-19 neuropathy,” Cell Discov 2022, 8, 99. doi:
https://doi.org/10.1038/s41421-022-00458-3 - Maeda Y et al., “Diberential Ability of Spike Protein of SARS-CoV-2 Variants to Downregulate
ACE2,” Int. J. Mol. Sci. 2024, 25, 2: 1353. doi: https://doi.org/10.3390/ijms25021353 - Magen E et al., “Clinical and Molecular Characterization of a Rare Case of BNT162b2 mRNA
COVID-19 Vaccine-Associated Myositis,” Vaccines 2022, 10: 1135. doi:
https://doi.org/10.3390/vaccines10071135 - Magro C et al., “Disruption of the blood-brain barrier is correlated with spike endocytosis by ACE2 endothelia in the CNS microvasculature in fatal COVID-19. Scientific commentary on ‘Detection
of blood-brain barrier disruption in brains of patients with COVID-19, but no evidence of brain
penetration by SARS-CoV-2’,” Acta Neuropathol. 2024, 147, 1: 47. doi:
https://doi.org/10.1007/s00401-023-02681-y - Magro C et al., “The histologic and molecular correlates of COVID-19 vaccine-induced changes in
the skin,” Clin. Dermatol. 2021, 39, 6: 966-984. doi:
https://doi.org/10.1016/j.clindermatol.2021.07.011 - Marrone L et al., “Tirofiban prevents the ebects of SARS-CoV-2 spike protein on macrophage
activation and endothelial cell death,” Heliyon 2024, 10, 15: e35341. doi:
10.1016/j.heliyon.2024.e35341 - Martin-Navarro L et al., “In situ detection of vaccine mRNA in the cytoplasm of hepatocytes during
COVID-19 vaccine-related hepatitis,” J. Hepatol. 2023, 78, 1: e20-e22.
doi: 10.1016/j.jhep.2022.08.039 - Martinez-Marmol R et al., “SARS-CoV-2 infection and viral fusogens cause neuronal and glial
fusion that compromises neuronal activity,” Sci. Adv. 2023, 9, 23. doi: 10.1126/sciadv.adg2248 - Matschke J et al., “Neuropathology of patients with COVID-19 in Germany: a post-mortem case
series,” Lancet Neurol. 2020, 19, 11: 919-929. doi: 10.1016/S1474-4422(20)30308-2 - Matsuzawa Y et al., “Impact of Renin–Angiotensin–Aldosterone System Inhibitors on COVID-19,”
Hypertens Res. 2022, 45, 7: 1147–1153. doi: https://doi.org/10.1038/s41440-022-00922-3 - Maugeri M et al.. “Linkage between endosomal escape of LNP-mRNA and loading into EVs for
transport to other cells,” Nat Commun 2019, 10: 4333. doi: https://doi.org/10.1038/s41467-019-
12275-6 - Maugeri N et al., “Unconventional CD147-Dependent Platelet Activation Elicited by SARS-CoV-2
in COVID-19,” J. Thromb. Haemost. 2021, 20, 2: 434–448. doi: https://doi.org/10.1111/jth.15575 - Mayordomo-Colunga J et al., “SARS-CoV-2 spike protein in intestinal cells of a patient with
coronavirus disease 2019 multisystem inflammatory syndrome,” J Pediatr. 2022, 243: 214-18e215.
doi: https://doi.org/10.1016/j.jpeds.2021.11.058 - Mercado-Gómez M et al., “The spike of SARS-CoV-2 promotes metabolic rewiring in
hepatocytes,” Commun. Biol. 2022, 5, 827. doi: https://doi.org/10.1038/s42003-022-03789-9 - Meyer K et al., “SARS-CoV-2 Spike Protein Induces Paracrine Senescence and Leukocyte
Adhesion in Endothelial Cells,” J. Virol. 2021, 95, e0079421. doi:
https://doi.org/10.1128/jvi.00794-21 - Miller GM et al., “SARS-CoV-2 and SARS-CoV-2 Spike protein S1 subunit Trigger Proinflammatory
Response in Macrophages in the Absence of Productive Infection,” J. Immunol. 2023, 210
(1_Supplement): 71.30. doi: https://doi.org/10.4049/jimmunol.210.Supp.71.30 - Mishra R and AC Banerjea, “SARS-CoV-2 Spike targets USP33-IRF9 axis via exosomal miR-148a to
activate human microglia,” Front. Immunol. 2021, 12: 656700. doi:
https://doi.org/10.3389/fimmu.2021.656700 - Mörz M, “A Case Report: Multifocal Necrotizing Encephalitis and Myocarditis after BNT162b2
mRNA Vaccination against COVID-19,” Vaccines 2022, 10, 10: 1651. doi:
https://doi.org/10.3390/vaccines10101651 - Moutal A et al., “SARS-CoV-2 Spike protein co-opts VEGF-A/Neuropilin-1 receptor signaling to
induce analgesia,” Pain 2020, 162, 1: 243–252. doi: 10.1097/j.pain.0000000000002097 - Munavilli GG et al., “COVID-19/SARS-CoV-2 virus spike protein-related delayed inflammatory
reaction to hyaluronic acid dermal fillers: a challenging clinical conundrum in diagnosis and
treatment,” Arch. Dermatol. Res. 2022, 314: 1-15. doi: https://doi.org/10.1007/s00403-021-02190-
6 - Nahalka J, “1-L Transcription of SARS-CoV-2 Spike Protein S1 Subunit,” Int. J. Mol. Sci. 2024, 25, 8: doi: https://doi.org/10.3390/ijms25084440
- Nascimento RR et al., “SARS-CoV-2 Spike protein triggers gut impairment since mucosal barrier to
innermost layers: From basic science to clinical relevance,” Mucosal Immunol. 2024, 17, 4: 565- doi: https://doi.org/10.1016/j.mucimm.2024.03.00 - Nguyen V, “The Spike Protein of SARS-CoV-2 Impairs Lipid Metabolism and Increases
Susceptibility to Lipotoxicity: Implication for a Role of Nrf2,” Cells 2022, 11, 12: 1916. doi:
https://doi.org/10.3390/cells11121916 - Niu C et al., “SARS-CoV-2 spike protein induces the cytokine release syndrome by stimulating T
cells to produce more IL-2,” Front. Immunol. 2024, 15: 1444643. doi:
https://doi.org/10.3389/fimmu.2024.1444643 - Norris B et al., “Evaluation of Glutathione in Spike Protein of SARS-CoV-2 Induced
Immunothrombosis and Cytokine Dysregulation,” Antioxidants 2024, 13, 3: 271.
doi: https://doi.org/10.3390/antiox13030271 - Nunez-Castilla J et al., “Potential autoimmunity resulting from molecular mimicry between SARSCoV-
2 spike and human proteins,” Viruses 2022, 14, 7: 1415. doi:
https://doi.org/10.3390/v14071415 - Nuovo JG et al., “Endothelial Cell Damage Is the Central Part of COVID-19 and a Mouse Model
Induced by Injection of the S1 Subunit of the Spike Protein,” Ann. Diagn. Pathol. 2021, 51, 151682.
doi: https://doi.org/10.1016/j.anndiagpath.2020.151682 - Nyein CM et al., “Severe de novo liver injury after Moderna vaccination – not always autoimmune
hepatitis,” J. Hepatol. 2022, 77, 2: 556-558. Doi: 10.1016/j.jhep.2022.03.041 - Nyström S, “Amyloidogenesis of SARS-CoV-2 Spike Protein,” J. Am. Chem. Soc. 2022, 144, 8945– doi: https://doi.org/10.1021/jacs.2c03925
- Ogata AF et al., “Circulating Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2)
Vaccine Antigen Detected in the Plasma of mRNA-1273 Vaccine Recipients,” Clin. Infect. Dis.
2022, 75, 4: 715–718. doi: https://doi.org/10.1093/cid/ciab465 - Ogata AF et al., “Ultra-Sensitive Serial Profiling of SARS-CoV-2 Antigens and Antibodies in Plasma
to Understand Disease Progression in COVID-19 Patients with Severe Disease,” Clin. Chem. 2020,
66, 12: 1562-1572. doi: https://doi.org/10.1093/clinchem/hvaa213 - Oh J et al., “SARS-CoV-2 Spike Protein Induces Cognitive Deficit and Anxiety-Like Behavior in
Mouse via Non-cell Autonomous Hippocampal Neuronal Death,” Scientific Reports 2022, 12, doi: https://doi.org/10.1038/s41598-022-09410-7 - Oka N et al., “SARS-CoV-2 S1 protein causes brain inflammation by reducing intracerebral
acetylcholine production,” iScience 2023, 26, 6: 106954. doi: 10.1016/j.isci.2023.106954 - Olajide OA et al., “Induction of Exaggerated Cytokine Production in Human Peripheral Blood
Mononuclear Cells by a Recombinant SARS-CoV-2 Spike Glycoprotein S1 and Its Inhibition by
Dexamethasone,” Inflammation 2021, 44: 1865–1877. doi: https://doi.org/10.1007/s10753-021-
01464-5 - Olajide OA et al., “SARS-CoV-2 spike glycoprotein S1 induces neuroinflammation in BV-2
microglia,” Mol. Neurobiol. 2022, 59: 445-458. doi: https://doi.org/10.1007/s12035-021-02593-6 - Onnis A et al., “SARS-CoV-2 Spike protein suppresses CTL-mediated killing by inhibiting immune
synapse assembly,” J Exp Med 2023, 220, 2: e20220906. doi:
https://doi.org/10.1084/jem.20220906 - Palestra F et al., “SARS-CoV-2 Spike Protein Activates Human Lung Macrophages,” Int. J. Mol.
Sci. 2023, 24, 3: 3036. doi: https://doi.org/10.3390/ijms24033036 - Pallas RM, “Innate and adaptative immune mechanisms of COVID-19 vaccines. Serious adverse
events associated with SARS-CoV-2 vaccination: A systematic review,” Vacunas (English ed.)
2024, 25, 2: 285.e1-285.e94. doi: https://doi.org/10.1016/j.vacune.2024.05.002 - Panigrahi S et al., “SARS-CoV-2 Spike Protein Destabilizes Microvascular Homeostasis,” Microbiol
Spectr. 2021, 9, 3: e0073521. doi: https://doi.org/10.1128/Spectrum.00735-21 - Parcial ALN et al., “SARS-CoV-2 Is Persistent in Placenta and Causes Macroscopic,
Histopathological, and Ultrastructural Changes,” Viruses 2022, 14, 9: 1885.
doi: https://doi.org/10.3390/v14091885 - Park C et al., “Murine alveolar Macrophages Rapidly Accumulate intranasally Administered SARSCoV-
2 Spike Protein leading to neutrophil Recruitment and Damage,” Elife 2024, 12: RP86764. doi:
https://doi.org/10.7554/eLife.86764.3 - Park YJ et al., “D-dimer and CoV-2 spike-immune complexes contribute to the production of PGE2
and proinflammatory cytokines in monocytes,” PLoS Pathog. 2022, 18, 4: e1010468. doi:
https://doi.org/10.1371/journal.ppat.1010468 - Park YJ et al., “Pyrogenic and inflammatory mediators are produced by polarized M1 and M2
macrophages activated with D-dimer and SARS-CoV-2 spike immune complexes,” Cytokine 2024,
173: 156447. doi: https://doi.org/10.1016/j.cyto.2023.156447 - Parry PL et al., “‘Spikeopathy’: COVID-19 Spike Protein Is Pathogenic, from Both Virus and Vaccine
mRNA,” Biomedicine 2023, 11, 8: 2287. doi: https://doi.org/10.3390/biomedicines11082287 - Passariello M et al., “Interactions of Spike-RBD of SARS-CoV-2 and Platelet Factor 4: New Insights
in the Etiopathogenesis of Thrombosis,” Int. J. Mol. Sci. 2021, 22, 16: 8562.
doi: https://doi.org/10.3390/ijms22168562 - Pateev I et al., “Biodistribution of RNA Vaccines and of Their Products: Evidence from Human and
Animal Studies,” Biomedicines 2024, 12, 1: 59.
doi: https://doi.org/10.3390/biomedicines12010059 - Patra T et al., “SARS-CoV-2 spike protein promotes IL-6 trans-signaling by activation of
angiotensin II receptor signaling in epithelial cells,” PLoS Pathog. 2020, 16: e1009128. doi:
https://doi.org/10.1371/journal.ppat.1009128 - Patterson BK et al., “Persistence of SARS CoV-2 S1 Protein in CD16+ Monocytes in Post-Acute
Sequelae of COVID-19 (PASC) up to 15 Months Post-Infection,” Front. Immunol. 12 (Sec. Viral
Immunology). doi: https://doi.org/10.3389/fimmu.2021.746021 - Peluso MJ et al., “Plasma-based antigen persistence in the post-acute phase of COVID-19,”
Lancet 2024, 24, 6: E345-E347. doi: 10.1016/S1473-3099(24)00211-1 - Peluso MJ et al., “SARS-CoV-2 and mitochondrial proteins in neural-derived exosomes of COVID-
19,” Ann Neurol 2022, 91, 6: 772-781. doi: https://doi.org/10.1002/ana.26350 - Pence B, “Recombinant SARS-CoV-2 Spike Protein Mediates Glycolytic and Inflammatory
Activation in Human Monocytes,” Innov Aging 2020, 4, sp. 1: 955. doi:
https://doi.org/10.1093/geroni/igaa057.3493 - Perico L et al., “SARS-CoV-2 and the spike protein in endotheliopathy,” Trends Microbiol. 2024, 32,
1: 53-67. doi: 10.1016/j.tim.2023.06.004 - Perico L et al., “SARS-CoV-2 Spike Protein 1 Activates Microvascular Endothelial Cells and
Complement System Leading to Platelet Aggregation,” Front. Immunol. 2022, 13, 827146. doi:
https://doi.org/10.3389/fimmu.2022.827146 - Petrlova J et al., “SARS-CoV-2 spike protein aggregation is triggered by bacterial
lipopolysaccharide,” FEBS Lett. 2022, 596: 2566–2575. doi: https://doi.org/10.1002/1873-
3468.14490 - Petrosino S and N Matende, “Elimination/Neutralization of COVID-19 Vaccine-Produced Spike
Protein: Scoping Review,” Mathews Journal of Nutrition & Dietetics 2024, 7, 2. doi:
https://doi.org/10.30654/MJND.10034 - Petrovszki D et al., “Penetration of the SARS-CoV-2 Spike Protein across the Blood-Brain Barrier,
as Revealed by a Combination of a Human Cell Culture Model System and Optical
Biosensing,” Biomedicines 2022, 10, 1: 188. doi: https://doi.org/10.3390/biomedicines10010188 - Petruk G et al., “SARS-CoV-2 spike protein binds to bacterial lipopolysaccharide and boosts
proinflammatory activity,” J. Mol. Cell Biol. (2020) 12: 916-932. doi:
https://doi.org/10.1093/jmcb/mjaa067 - Prieto-Villalobos J et al., “SARS-CoV-2 spike protein S1 activates Cx43 hemichannels and disturbs
intracellular Ca2+ dynamics,” Biol Res. 2023, 56, 1: 56. doi: https://doi.org/10.1186/s40659-023-
00468-9 - Puthia MTL et al., “Experimental model of pulmonary inflammation induced by SARS-CoV-2 spike
protein and endotoxin,” ACS Pharmacol Transl Sci. 2022, 5, 3: 141–8. doi:
https://doi.org/10.1021/acsptsci.1c00219 - Raghavan S et al., “SARS-CoV-2 Spike Protein Induces Degradation of Junctional Proteins That
Maintain Endothelial Barrier Integrity,” Front. Cardiovasc. Med. 2021, 8, 687783. doi:
https://doi.org/10.3389/fcvm.2021.687783 - Rahman M et al., “Diberential Ebect of SARS-CoV-2 Spike Glycoprotein 1 on Human Bronchial
and Alveolar Lung Mucosa Models: Implications for Pathogenicity,” Viruses 2021, 13, 12: doi: https://doi.org/10.3390/v13122537 - Rajah MM et al., “SARS-CoV-2 Alpha, Beta, and Delta variants display enhanced spike-mediated
syncytia formation,” EMBO J. 2021, 40: e108944. doi: https://doi.org/10.15252/embj.2021108944 - Ratajczak MZ et al., “SARS-CoV-2 Entry Receptor ACE2 Is Expressed on Very Small
CD45- Precursors of Hematopoietic and Endothelial Cells and in Response to Virus Spike Protein
Activates the Nlrp3 Inflammasome,” Stem Cell Rev Rep. 2021, 17, 1: 266-277. doi:
https://doi.org/10.1007/s12015-020-10010-z - Rhea EM et al., “The S1 protein of SARS-CoV-2 crosses the blood–brain barrier in mice,” Nature
Neuroscience 2021, 24, 3: 368–378. doi: https://doi.org/10.1038/s41593-020-00771-8 - Rivas MN et al., “COVID-19–associated multisystem inflammatory syndrome in children (MIS-C):
A novel disease that mimics toxic shock syndrome—the superantigen hypothesis,” J Allergy Clin
Immunol 2021, 147, 1: 57-59. doi: 10.1016/j.jaci.2020.10.008 - Rivas MN et al., “Multisystem Inflammatory Syndrome in Children and Long COVID: The SARSCoV-
2 Viral Superantigen Hypothesis,” Front Immunol. 2022, 13 (Sec. Molecular Innate Immunity)
doi: https://doi.org/10.3389/fimmu.2022.941009 - Robles JP et al., “The Spike Protein of SARS-CoV-2 Induces Endothelial Inflammation through
Integrin α5β1 and NF-κB Signaling,” J. Biol. Chem. 2022, 298, 3: 101695. doi:
https://doi.org/10.1016/j.jbc.2022.101695 - Roden AC et al., “Comparison of In Situ Hybridization, Immunohistochemistry, and Reverse
Transcription–Droplet Digital Polymerase Chain Reaction for Severe Acute Respiratory Syndrome
Coronavirus 2 (SARS-CoV-2) Testing in Tissue,” Arch Pathol Lab Med 2021, 145, 7: 785–796. doi:
https://doi.org/10.5858/arpa.2021-0008-SA - Rodriguez Y et al., “Autoinflammatory and autoimmune conditions at the crossroad of COVID-19,”
J. Autoimmun. 2020, 114: 102506. doi: https://doi.org/10.1016/j.jaut.2020.102506 - Rong Z et al., “Persistence of spike protein at the skull-meninges-brain axis may contribute to the
neurological sequelae of COVID-19,” Cell Host Microbe 2024, 26: S1931-3128(24)00438-4. doi:
10.1016/j.chom.2024.11.007 - Ropa J et al., “Human Hematopoietic Stem, Progenitor, and Immune Cells Respond Ex Vivo to
SARS-CoV-2 Spike Protein,” Stem Cell Rev Rep. 2021, 17, 1: 253-265. doi:
https://doi.org/10.1007/s12015-020-10056-z - Rotoli BM et al., “Endothelial cell activation by SARS-CoV-2 spike S1 protein: A crosstalk between
endothelium and innate immune cells,” Biomedicines 2021, 9, 9: 1220. doi:
https://doi.org/10.3390/biomedicines9091220 - Roytenberg R et al., “Thymidine phosphorylase mediates SARS-CoV-2 spike protein enhanced
thrombosis in K18-hACE2TG mice,” Thromb. Res. 2024, 244, 8: 109195. doi:
10.1016/j.thromres.2024.109195 - Ruben ML et al., “The SARS-CoV-2 spike protein subunit S1 induces COVID-19-like acute lung
injury in Κ18-hACE2 transgenic mice and barrier dysfunction in human endothelial cells,” Am J
Physiol Lung Cell Mol Physiol. 2021, 321, 2: L477-L484.
doi: https://doi.org/10.1152/ajplung.00223.2021 - Russo A, et al., “Implication of COVID-19 on Erythrocytes Functionality: Red Blood Cell
Biochemical Implications and Morpho-Functional Aspects,” Int. J. Mol. Sci. 2022, 23, 4: 2171.
doi: https://doi.org/10.3390/ijms23042171 - Ryu JK et al., “Fibrin drives thromboinflammation and neuropathology in COVID-19,” Nature 2024,
633: 905-913. doi: https://doi.org/10.1038/s41586-024-07873-4 - Rzymski P and Andrzej Fal, “To aspirate or not to aspirate? Considerations for the COVID-19
vaccines,” Pharmacol. Rep 2022, 74: 1223–1227. doi: https://doi.org/10.1007/s43440-022-00361-
4 - Saadi F et al., “Spike glycoprotein is central to coronavirus pathogenesis-parallel between m-CoV
and SARS-CoV-2,” Ann Neurosci. 2021, 28 (3-4): 201–218. doi:
https://doi.org/10.1177/09727531211023755 - Sacco K et al., “Immunopathological signatures in multisystem inflammatory syndrome in
children and pediatric COVID-19,” Nat. Med. 2022, 28: 1050-1062. doi:
https://doi.org/10.1038/s41591-022-01724-3 - Samsudin S et al., “SARS-CoV-2 spike protein as a bacterial lipopolysaccharide delivery system in
an overzealous inflammatory cascade,” J. Mol. Biol. 2022, 14, 9: mjac058.
https://doi.org/10.1093/jmcb/mjac058 - Sandelius A et al., “Biodistribution of lipid nanoparticle, eGFP mRNA and translated protein
following subcutaneous administration in mouse,” Bioanalysis 2024, 16, 14: 721-733. doi:
https://doi.org/10.1080/17576180.2024.2360361 - Sano H et al., “A case of persistent, confluent maculopapular erythema following a COVID-19
mRNA vaccination is possibly associated with the intralesional spike protein expressed by
vascular endothelial cells and eccrine glands in the deep dermis,” J. Dermatol. 2023, 50: 1208– doi: https://doi.org/10.1111/1346-8138.16816 - Sano S et al., “SARS-CoV-2 spike protein found in the acrosyringium and eccrine gland of
repetitive miliaria-like lesions in a woman following mRNA vaccination,” J. Dermatol. 2024, 51, 9:
e293-e295. doi: https://doi.org/10.1111/1346-8138.17204 - Santonja C et al., “COVID-19 chilblain-like lesion: immunohistochemical demonstration of SARSCoV-
2 spike protein in blood vessel endothelium and sweat gland epithelium in a polymerase
chain reaction-negative patient,” Br J Dermatol. 2020, 183, 4: 778-780. doi:
https://doi.org/10.1111/bjd.19338 - Satta S et al., “An engineered nano-liposome-human ACE2 decoy neutralizes SARS-CoV-2 Spike
protein-induced inflammation in both murine and human macrophages,” Theranostics 2022, 12,
6: 2639–2657. doi: 10.7150/thno.66831 - Sattar S et al., “Nuclear translocation of spike mRNA and protein is a novel feature of SARS-CoV-
2,” 2023 Front. Microbiol. 2023, 14 (Sec. Virology). doi:
https://doi.org/10.3389/fmicb.2023.1073789 - Scheim DE, “A Deadly Embrace: Hemagglutination Mediated by SARS-CoV-2 Spike Protein at its
22 N-Glycosylation Sites, Red Blood Cell Surface Sialoglycoproteins, and Antibody,” Int. J. Mol.
Sci. 2022, 23, 5, 2558. doi: https://doi.org/10.3390/ijms23052558 - Scheim DE et al., “Sialylated Glycan Bindings from SARS-CoV-2 Spike Protein to Blood and
Endothelial Cells Govern the Severe Morbidities of COVID-19,” Int. J. Mol. Schi. 2023, 24,
23:17039. doi: https://doi.org/10.3390/ijms242317039 - Scholkmann F and CA May, “COVID-19, post-acute COVID-19 syndrome (PACS, ‘long COVID’) and
post-COVID-19 vaccination syndrome (PCVS, ‘post-COVIDvac-syndrome’): Similarities and
diberences,” Pathol Res Pract. 2023, 246: 154497. doi: https://doi.org/10.1016/j.prp.2023.154497 - Schreckenberg R et al., “Cardiac side ebects of RNA-based SARS-CoV-2 vaccines: Hidden
cardiotoxic ebects of mRNA-1273 and BNT162b2 on ventricular myocyte function and structure,”
Br. J. Pharmacol. 2024, 181, 3: 345-361. doi: https://doi.org/10.1111/bph.16262 - Schroeder JT and AP Bieneman, “The S1 Subunit of the SARS-CoV-2 Spike protein activates
human monocytes to produce cytokines linked to COVID-19: relevance to galectin-3,” Front
Immunol. 2022, 13: 831763. doi: https://doi.org/10.3389/fimmu.2022.831763 - Schultheiss C et al., “Liquid biomarkers of macrophage dysregulation and circulating spike
protein illustrate the biological heterogeneity in patients with post-acute sequelae of COVID-19,” J
Med Virol 2023, 95, 1: e28364. doi: https://doi.org/10.1002/jmv.28364 - Segura-Villalobos D et al., “Jacareubin inhibits TLR4-induced lung inflammatory response caused
by the RBD domain of SARS-CoV-2 Spike protein,” Pharmacol. Rep. 2022, 74: 1315–1325. doi:
https://doi.org/10.1007/s43440-022-00398-5 - Semmarath W et al., “Cyanidin-3-O-glucoside and Peonidin-3-O-glucoside-Rich Fraction of Black
Rice Germ and Bran Suppresses Inflammatory Responses from SARS-CoV-2 Spike Glycoprotein
S1-Induction In Vitro in A549 Lung Cells and THP-1 Macrophages via Inhibition of the NLRP3
Inflammasome Pathway,” Nutrients 2022, 14, 13: 2738. doi: https://doi.org/10.3390/nu14132738 - Sharma VK et al., “Nanocurcumin Potently Inhibits SARS-CoV-2 Spike Protein-Induced Cytokine
Storm by Deactivation of MAPK/NF-κB Signaling in Epithelial Cells,” ACS Appl. Bio Mater. 2022, 5,
2: 483–491. doi: https://doi.org/10.1021/acsabm.1c00874 - Shirato K and Takako Kizaki, “SARS-CoV-2 Spike Protein S1 Subunit Induces Pro-inflammatory
Responses via Toll-Like Receptor 4 Signaling in Murine and Human Macrophages,” Heliyon 2021,
7, 2: e06187. doi: https://doi.org/10.1016/j.heliyon.2021.e06187 - Singh N and Anuradha Bharara Singh, “S2 Subunit of SARS-nCoV-2 Interacts with Tumor
Suppressor Protein p53 and BRCA: An in Silico Study,” Transl. Oncol. 2020, 13, 10: 100814, doi:
https://doi.org/10.1016/j.tranon.2020.100814 - Singh RD, “The spike protein of sars-cov-2 induces heme oxygenase-1: pathophysiologic
implications,” Biochim Biophys Acta, Mol Basis Dis 2022, 1868, 3: 166322. doi:
https://doi.org/10.1016/j.bbadis.2021.166322 - Sirsendu J et al., “Cell-Free Hemoglobin Does Not Attenuate the Ebects of SARS-CoV-2 Spike
Protein S1 Subunit in Pulmonary Endothelial Cells,” Int. J. Mol. Sci., 2021, 22, 16: 9041. doi:
https://doi.org/10.3390/ijms22169041 - Soares CD et al., “Oral vesiculobullous lesions as an early sign of COVID-19:
immunohistochemical detection of SARS-CoV-2 spike protein,” Br. J. Dermatol. 2021, 184, 1: e6.
doi: https://doi.org/10.1111/bjd.19569 - Solis O et al., “The SARS-CoV-2 spike protein binds and modulates estrogen receptors,” Sci.
Adv. 2022, 8, 48: eadd4150. doi: 10.1126/sciadv.add4150 - Stern B et al., “SARS-CoV-2 spike protein induces endothelial dysfunction in 3D engineered
vascular networks,” J. Biomed. Mater. Res. A. 2023, 112, 4: 524-533. doi:
https://doi.org/10.1002/jbm.a.37543 - Sui Y et al., “SARS-CoV-2 Spike Protein Suppresses ACE2 and Type I Interferon Expression in
Primary Cells From Macaque Lung Bronchoalveolar Lavage,” Front. Immunol. 2021, 12. doi:
https://doi.org/10.3389/fimmu.2021.658428 - Sun Q et al., “SARS-coV-2 spike protein S1 exposure increases susceptibility to angiotensin IIinduced
hypertension in rats by promoting central neuroinflammation and oxidative
stress,” Neurochem. Res. 2023, 48, 3016–3026. doi: https://doi.org/10.1007/s11064-023-03949-1 - Sung PS et al., “CLEC5A and TLR2 Are Critical in SARS-CoV-2-Induced NET Formation and Lung
Inflammation,” J. Biomed. Sci. 2002, 29, 52. doi: https://doi.org/10.1186/s12929-022-00832-z - Suprewicz L et al., “Blood-brain barrier function in response to SARS-CoV-2 and its spike
protein,” Neurol. Neurochir Pol. 2023, 57: 14–25. doi: 10.5603/PJNNS.a2023.0014 - Suprewicz L et al., “Recombinant human plasma gelsolin reverses increased permeability of the
blood-brain barrier induced by the spike protein of the SARS-CoV-2 virus,” J Neuroinflammation
2022, 19, 1: 282, doi: https://doi.org/10.1186/s12974-022-02642-4 - Suzuki YJ et al., “SARS-CoV-2 spike protein-mediated cell signaling in lung vascular cells,” Vascul.
Pharmacol. 2021, 137: 106823. doi: https://doi.org/10.1016/j.vph.2020.106823 - Suzuki YJ and SG Gychka, “SARS-CoV-2 Spike Protein Elicits Cell Signaling in Human Host Cells:
Implications for Possible Consequences of COVID-19 Vaccines,” Vaccines 2021, 9, 1, 36.
doi: https://doi.org/10.3390/vaccines9010036 - Swank Z, et al. “Persistent Circulating Severe Acute Respiratory Syndrome Coronavirus 2 Spike Is
Associated With Post-acute Coronavirus Disease 2019 Sequelae,” Clin. Infect. Dis. 2023, 76, 3:
e487–e490. doi: https://doi.org/10.1093/cid/ciac722 - Tetz G and Victor Tetz, “Prion-Like Domains in Spike Protein of SARS-CoV-2 Diber across Its
Variants and Enable Changes in Abinity to ACE2,” Microorganisms 2022, 10, 2: 280, doi:
https://doi.org/10.3390/microorganisms10020280 - Theobald SJ et al., “Long-lived macrophage reprogramming drives spike protein-mediated
inflammasome activation in COVID-19,” EMBO Mol. Med. 2021, 13: e14150. doi:
https://doi.org/10.15252/emmm.202114150 - Theoharides TC, “Could SARS-CoV-2 Spike Protein Be Responsible for Long-COVID Syndrome?”
Mol. Neurobiol. 2022, 59, 3: 1850–1861. doi: https://doi.org/10.1007/s12035-021-02696-0 - Theoharides TC and P Conti, “Be Aware of SARS-CoV-2 Spike Protein: There Is More Than Meets
the Eye,” J. Biol. Reg. Homeost. Agents 2021, 35, 3: 833–838 doi: 10.23812/THEO_EDIT_3_21 - Theuerkauf SA et al., “Quantitative assays reveal cell fusion at minimal levels of SARS-CoV-2 spike
protein and fusion from without,” iScience 2021, 24, 3: 102170.
doi: https://doi.org/10.1016/j.isci.2021.102170 - Tillman TS et al., “SARS-CoV-2 Spike Protein Downregulates Cell Surface alpha7nAChR through a
Helical Motif in the Spike Neck,” ACS Chem. Neurosci. 2023, 14, 4: 689–698. doi:
https://doi.org/10.1021/acschemneuro.2c00610 - Trougakos IP et al., “Adverse Ebects of COVID-19 mRNA Vaccines: The Spike Hypothesis,” Trends
Mol. Med. 2022, 28, 7: 542–554. doi: 10.1016/j.molmed.2022.04.007 - Tyrkalska SD et al., “Diberential proinflammatory activities of spike proteins of SARS-CoV-2
variants of concern,” Sci. Adv. 2022, 8, 37: eabo0732. doi: 10.1126/sciadv.abo0732 - Vargas-Castro R et al., “Calcitriol prevents SARS-CoV spike-induced inflammation in human
trophoblasts through downregulating ACE2 and TMPRSS2 expression,” J Steroid Biochem Mol
Biol 2025, 245: 106625. doi: https://doi.org/10.1016/j.jsbmb.2024.106625 - Vettori M et al., “Ebects of Diberent Types of Recombinant SARS-CoV-2 Spike Protein on
Circulating Monocytes’ Structure,” Int. J. Mol. Sci. 2023, 24, 11: 9373.
doi: https://doi.org/10.3390/ijms24119373 - Villacampa A et al., “SARS-CoV-2 S protein activates NLRP3 inflammasome and deregulates
coagulation factors in endothelial and immune cells,” Cell Commun. Signal. 2024, 22, 38. doi:
https://doi.org/10.1186/s12964-023-01397-6 - Visvabharathy L et al., “Case report: Treatment of long COVID with a SARS-CoV-2 antiviral and IL-6
blockade in a patient with rheumatoid arthritis and SARS-CoV-2 antigen persistence,” Front. Med.
2022, 9 (Sec. Infectious Diseases – Surveillance). doi:
https://doi.org/10.3389/fmed.2022.1003103 - Vojdani A and D Kharrazian, “Potential antigenic cross-reactivity between SARS-CoV-2 and human
tissue with a possible link to an increase in autoimmune diseases,” Clin Immunol. 2020, 217: doi: https://doi.org/10.1016/j.clim.2020.108480 - Vojdani A et al., “Reaction of Human Monoclonal Antibodies to SARS-CoV-2 Proteins With Tissue
Antigens: Implications for Autoimmune Diseases,” Front. Immunol. 2021, 11 (Sec. Autoimmune
and Autoinflammatory Disorders). doi: https://doi.org/10.3389/fimmu.2020.617089 - Wang J et al., “SARS-CoV-2 Spike Protein S1 Domain Accelerates α-Synuclein Phosphorylation
and Aggregation in Cellular Models of Synucleinopathy,” Mol Neurobiol. 2024, 61, 4:2446-2458.
doi: https://doi.org/10.1007/s12035-023-03726-9 - Wu H et al., “Molecular evidence suggesting the persistence of residual SARS-CoV-2 and immune
responses in the placentas of pregnant patients recovered from COVID-19,” Cell Prolif. 2021, 54,
9: e13091. doi: https://doi.org/10.1111/cpr.13091 - Wu ML et al., “Mast cell activation triggered by SARS-CoV-2 causes inflammation in brain
microvascular endothelial cells and microglia,” Front. Cell. Infect. Microbiol., 2024, 14. doi:
https://doi.org/10.3389/fcimb.2024.1358873 - Yamamoto M et al., “Persistent varicella zoster virus infection following mRNA COVID-19
vaccination was associated with the presence of encoded spike protein in the lesion,” J. Cutan
Immunol. Allergy. 2022:1–6. doi: https://doi.org/10.1002/cia2.12278 - Yeung-Luk BH et al., “SARS-CoV-2 infection alters mitochondrial and cytoskeletal function in
human respiratory epithelial cells mediated by expression of spike protein,” mBio 2023, 14, 4:
e00820-23. doi: https://doi.org/10.1128/mbio.00820-23 - Yilmaz A et al., “Diberential proinflammatory responses of colon epithelial cells to SARS-CoV-2
spike protein and Pseudomonas aeruginosa lipopolysaccharide,” Turk J Biochem. 2024. doi:
https://doi.org/10.1515/tjb-2024-0144 - Yonker LM et al., “Circulating Spike Protein Detected in Post–COVID-19 mRNA Vaccine
Myocarditis,” Circulation 2023, 147, 11. doi:
https://doi.org/10.1161/CIRCULATIONAHA.122.061025 - Yonker LM et al., “Multisystem inflammatory syndrome in children is driven by zonulin-dependent
loss of gut mucosal barrier,” J Clin Invest. 2021, 131, 14: e149633. doi:
https://doi.org/10.1172/JCI149633 - Youn JY et al., “Therapeutic application of estrogen for COVID-19: Attenuation of SARS-CoV-2
spike protein and IL-6 stimulated, ACE2-dependent NOX2 activation, ROS production and MCP-1
upregulation in endothelial cells,” Redox Biol. 2021, 46: 102099. doi:
https://doi.org/10.1016/j.redox.2021.102099 - Youn YJ et al., “Nucleocapsid and spike proteins of SARS-CoV-2 drive neutrophil extracellular trap
formation,” Immune Netw. 2021, 21, 2: e16. doi: https://doi.org/10.4110/in.2021.21.e16 - Yu J et al., “Direct activation of the alternative complement pathway by SARS-CoV-2 spike proteins
is blocked by factor D inhibition,” Blood 2020, 136, 18: 2080–2089. doi:
https://doi.org/10.1182/blood.2020008248 - Zaki H and S Khan, “SARS-CoV-2 spike protein induces inflammatory molecules through TLR2 in
macrophages and monocytes,” J. Immunol. 2021, 206 (1_supplement): 62.07. doi:
https://doi.org/10.4049/jimmunol.206.Supp.62.07 - Zaki H and S Khan, “TLR2 senses spike protein of SARS-CoV-2 to trigger inflammation,”
J. Immunol. 2022, 208 (1_Supplement): 125.30. doi:
https://doi.org/10.4049/jimmunol.208.Supp.125.30 - Zekri-Nechar K et al., “Spike Protein Subunits of SARS-CoV-2 Alter Mitochondrial Metabolism in
Human Pulmonary Microvascular Endothelial Cells: Involvement of Factor Xa,” Dis. Markers 2022: doi: https://doi.org/10.1155/2022/1118195 - Zeng FM et al., “SARS-CoV-2 spike spurs intestinal inflammation via VEGF production in
enterocytes,” EMBO Mol Med. 2022, 14: e14844. doi: https://doi.org/10.15252/emmm.202114844 - Zhang Q et al., “Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) membrane (M)
and spike (S) proteins antagonize host type i interferon response,” Front Cell Infect Microbiol 2021,
11: 766922. doi: https://doi.org/10.3389/fcimb.2021.766922 - Zhang RG et al., “SARS-CoV-2 spike protein receptor binding domain promotes IL-6 and IL-8
release via ATP/P2Y2 and ERK1/2 signaling pathways in human bronchial epithelia,” Mol. Immunol.
2024, 167: 53-61. doi: https://doi.org/10.1016/j.molimm.2024.02.005 - Zhang S et al., “SARS-CoV-2 Binds Platelet ACE2 to Enhance Thrombosis in COVID-19,” J.
Hematol. Oncol. 2020, 13, 120. doi: https://doi.org/10.1186/s13045-020-00954-7 - Zhang Z et al., “SARS-CoV-2 spike protein dictates syncytium-mediated lymphocyte
elimination,” Cell Death Di^er. 2021, 28: 2765–2777. doi: https://doi.org/10.1038/s41418-021-
00782-3 - Zhao Y et al., “SARS-CoV-2 spike protein interacts with and activates TLR4,” Cell Res. 2021, 31:
818–820. doi: https://doi.org/10.1038/s41422-021-00495-9 - Zheng Y et al., “SARS-CoV-2 Spike Protein Causes Blood Coagulation and Thrombosis by
Competitive Binding to Heparan Sulfate,” Int. J. Biol. Macromol. 2021, 193: 1124–1129, doi:
https://doi.org/10.1016/j.ijbiomac.2021.10.112 - Zhu G et al., “SARS-CoV-2 spike protein-induced host inflammatory response signature in human
corneal epithelial cells,” Mol. Med. Rep. 2021, 24: 584. doi:
https://doi.org/10.3892/mmr.2021.12223 - Zollner A et al., “Postacute COVID-19 is Characterized by Gut Viral Antigen Persistence in
Inflammatory Bowel Diseases,” Gastroenterology 2022, 163, 2: 495-506.e8. doi:
https://doi.org/10.1053/j.gastro.2022.04.037 - Zurlow M et al., “The anti-SARS-CoV-2 BNT162b2 vaccine suppresses mithramycin-induced
erythroid diberentiation and expression of embryo-fetal globin genes in human erythroleukemia
K562 cells.” Exp Cell Res 2023, 433, 2: 113853. doi: https://doi.org/10.1016/j.yexcr.2023.113853
II. CATEGORIES