750 estudios sobre las lesiones de las inyecciones de ARNm contra COVID-19 categorizados

Compilado por Dr. Martin Wucher, MSC Dent Sc (eq DDS), Dr Byram Bridle, PhD, Dr. Steven Hatfill, Erik Sass, et al.  Extracto de CienciaySaludNatural.com

I. Compilado de investigación sobre la patogenicidad de la proteína pico o spike (n=375)

Originalmente parte de la cubierta externa del virus SARS-CoV2, donde funciona como una «llave» para “abrir” (infectar) las células, las proteínas pico o spike también son producidas en grandes cantidades por las «vacunas» de ARNm, desencadenando una respuesta inmune de corta duración en forma de anticuerpos. Sin embargo, cada vez hay más pruebas que demuestran que la proteína pico o spike es nociva por sí misma, incluidos más de 370 artículos científicos revisados por expertos.

La sección Categorías organiza la investigación en categorías amplias que incluyen tejidos y sistemas de órganos afectados, mecanismos y pruebas de patología clínica. Dado que estas áreas se solapan, muchos artículos aparecen más de una vez en la segunda sección.

II. Estudios de biodistribución de la proteína pico o spike y del ARNm de la «vacuna» (n=61)

Además de las características patógenas del antígeno de la proteína pico, más de 60 estudios revisados por pares han demostrado que tanto el ARNm de la «vacuna» que codifica para el antígeno de la proteína de la espiga como la propia proteína pico pueden penetrar en tejidos distantes, causando daños sistémicos.

Los estudios de biodistribución muestran que tanto el ARNm de la «vacuna» que codifica para el antígeno de la proteína pico como la propia proteína pico pueden penetrar en tejidos distantes, causando daños sistémicos a una variedad de órganos y sistemas de órganos, incluida la placenta. El compilado de esta sección presenta más de 60 estudios revisados por pares (n=61) que documentan la amplia distribución del ARNm de la «vacuna» y la proteína pico asociada en seres humanos y en experimentación animal.

Estos artículos confirman que el ARNm de la «vacuna» y la proteína pico o spike pueden alcanzar tejidos y órganos como el corazón, el hígado, el cerebro, los pulmones, la placenta, el cordón umbilical, la leche materna, los ganglios linfáticos, el timo, los riñones, el bazo, la vejiga, el intestino grueso, los ojos, las glándulas suprarrenales, los ovarios, los testículos, la médula ósea, la piel, las glándulas lagrimales y el apéndice.

Además, un pequeño número de estudios demuestran la capacidad de la proteína pico viral para atravesar importantes barreras fisiológicas independientemente del resto del virus, lo que sugiere que la proteína de la espiga derivada de una «vacuna» idéntica puede hacer lo mismo. Se incluye un cuadro con resumen de los resultados de docenas de estudios recogidos en esta sección II, , que muestran qué componentes y productos de la «vacuna» se examinaron (ARNm, PNL y/o proteína pico) y los principales tejidos y órganos afectados. Tomados en conjunto con las pruebas de la patogenicidad de la proteína pico, estos hallazgos sugieren que las «vacunas» de ARNm pueden distribuir la proteína píco, nociva y de larga duración, de forma incontrolable por todo el cuerpo, causando lesiones y la muerte por diversos medios.

Ver estudios compilados de esta sección, descargar PDF

.III. Estudios sobre la persistencia del ARNm de la proteína pico y de la «vacuna» (n=41)

Más de 40 estudios revisados por expertos confirman que el ARNm de la «vacuna» y el antígeno proteico resultante persisten en los tejidos de los receptores humanos de la «vacuna» y de los animales de experimentación durante mucho más tiempo de lo que afirman las autoridades de salud pública; se ha demostrado que las proteínas pico virales, resultantes de la infección natural, persisten incluso durante más tiempo, lo que refuerza la preocupación de que la proteína pico idéntica de la «vacuna» también pueda durar más de lo previsto.

Ver estudios compilados de esta sección, descargar PDF

IV. Estudios de toxicidad y alergenicidad de nanopartículas lipídicas (n=80)

80 artículos revisados por expertos muestran que las nanopartículas lipídicas ionizables (NPL) utilizadas en las inyecciones experimentales de ARNm son altamente inflamatorias por sí mismas, incluido su componente de polietilenglicol (PEG), una causa establecida de anafilaxia (una reacción alérgica extrema).

Ver estudios compilados de esta sección, descargar PDF


V. Compilado de la impronta inmunitaria de la “vacuna” COVID-19 (n=140)
La impronta inmunitaria, denominada «pecado antigénico original» por Thomas Francis Jr., se produce cuando los linfocitos B de memoria producidos en respuesta a una infección vírica inicial dominan las respuestas posteriores a virus relacionados. 140 artículos revisados por expertos sugieren que las «vacunas» COVID imprimieron el sistema inmunitario de los receptores a través de la exposición a la proteína de la espiga «salvaje» de la cepa original Wuhan, moldeando su respuesta a las variantes posteriores de formas potencialmente dañinas.

Ver estudios compilados de esta sección, descargar PDF

VI. Compilado de investigaciónes sobre vacunas y variantes virales del SARS-CoV2 (n=70)

Además de la patogenicidad, distribución y larga persistencia de la proteína pico de la «vacuna», esta colección de 70 artículos revisados por expertos sugiere que las “vacunas” aplicaron una fuerte presión selectiva al virus del SRAS-CoV2, que mutaba rápidamente, dando lugar rápidamente a variantes resistentes a la «vacuna».

Ver estudios compilados de esta sección, descargar PDF

CATEGORIES

A. General/Overview (36)
B. ACE2 (23)
C. Amyloid, prion-like properties (14)
D. Autoimmune (14)
E. Blood pressure/hypertension (2)
F. CD147 (13)
G. Cell membrane permeability, barrier dysfunction (16)
H. Cerebral, cerebrovascular, neurologic, blood-brain barrier, cognitive (28)
I. Clinical pathology (23)
J. Clotting, platelets, hemoglobin (35)
K. Cytokines, chemokines, interferon, interleukins (36)
L. Endothelial (30)
M. Gastrointestinal (8)
N. Immune dysfunction (8)
O. Macrophages, monocytes, neutrophils (32)
P. MAPK/NF-kB (10)
Q. Mast cells (4)
R. Microglia (10)
S. Microvascular (8)
T. MIS-C, pediatric (8)
U. Mitochondria/metabolism (9)
V. Myocarditis, cardiac, cardiomyopathy (22)
W. NLRP3 (15)
X. Ocular, ophthalmic, conjunctival (3)
Y. Other cell signaling (20)
Z. PASC, post COVID, long COVID (22)
AA. Pregnancy, fetal, placenta (7)
BB. Pulmonary, respiratory (33)
CC. Renin-Angiotensin-Aldosterone System (3)
DD. Senescence/aging (3)
EE. Stem cells (3)
FF. Syncytia/cell fusion (10)
GG. Therapeutics (44)
HH. Toll-like receptors (TLRs) (15)
A. General/Overview

  1. Acevedo-Whitehouse K and R Bruno, “Potential health risks of mRNA-based vaccine
    therapy: A hypothesis,” Med. Hypotheses 2023, 171: 111015. doi:
    https://doi.org/10.1016/j.mehy.2023.111015 – https://cienciaysaludnatural.com/riesgos-potenciales-para-la-salud-de-la-terapia-con-vacunas-basadas-en-arnm/
  2. Almehdi AM et al., “SARS-CoV-2 Spike Protein: Pathogenesis, Vaccines, and
    Potential Therapies,” Infection 2021, 49, 5: 855–876. doi:
    https://doi.org/10.1007/s15010-021-01677-8
  3. Baldari CT et al., “Emerging Roles of SARS-CoV-2 Spike-ACE2 in Immune Evasion
    and Pathogenesis,” Trends Immunol. 2023, 44, 6. doi: 10.1016/j.it.2023.04.001
  4. Bansal S et al., “Cutting Edge: Circulating Exosomes with COVID Spike Protein Are
    Induced by BNT162b2 (Pfizer-BioNTech) Vaccination prior to Development of
    Antibodies: A Novel Mechanism for Immune Activation by mRNA Vaccines,” J.
    Immunol. 2021, 207, 10: 2405–2410. doi: 10.4049/jimmunol.2100637
  5. Bellucci M et al., “Post-SARS-CoV-2 infection and post-vaccine-related neurological
    complications share clinical features and the same positivity to anti-ACE2
    antibodies,” Front. Immunol. 2024, 15 (Sec. Multiple Sclerosis and
    Neuroimmunology). doi: https://doi.org/10.3389/fimmu.2024.1398028
  6. Boros LG et al., “Long-lasting, biochemically modified mRNA, and its frameshifted
    recombinant spike proteins in human tissues and circulation after COVID-19
    vaccination,” Pharmacol Res Perspect 2024, 12, 3: e1218. doi: 10.1002/prp2.1218
  7. Brady M et al., “Spike protein multiorgan tropism suppressed by antibodies targeting
    SARS-CoV-2,” Comm. Biol. 2021, 4, 1318. doi: 10.1038/s42003-021-02856-x
  8. Cari L et al., “Di]erences in the expression levels of SARS-CoV-2 spike protein in
    cells treated with mRNA-based COVID-19 vaccines: a study on vaccines from the
    real world,” Vaccines 2023, 11, 4: 879. doi: 10.3390/vaccines11040879
  9. Cosentino M and Franca Marino, “Understanding the Pharmacology of COVID- 19
    mRNA Vaccines: Playing Dice with the Spike?” Int. J. Mol. Sci. 2022, 23, 18: 10881.
    doi: https://doi.org/10.3390/ijms231810881
  10. Fertig TE et al., “Beyond the injection site: identifying the cellular targets of mRNA
    vaccines,” J Cell Ident 2024, 3, 1. doi: 10.47570/joci.2024.004
  11. Fertig TE et al., “Vaccine mRNA Can Be Detected in Blood at 15 Days Post
    Vaccination,” Biomedicines 2022, 10, 7: 1538. doi: 10.3390/biomedicines10071538
  12. Giannotta G et al., “COVID-19 mRNA Vaccines: The Molecular Basis of Some
    Adverse Events,” Vaccines 2023, 11, 4: 747. doi: 10.3390/vaccines11040747
  13. Gussow AB et al., “Genomic Determinants of Pathogenicity in SARS-CoV-2 and
    Other Human Coronaviruses,” PNAS 117, 2020, 26: 15193–15199. doi:
    https://doi.org/10.1073/pnas.2008176117
  14. Halma MTJ et al., “Strategies for the Management of Spike Protein-Related
    Pathology,” Microorganisms 2023, 11, 5: 1308, doi:
    https://doi.org/10.3390/microorganisms11051308
  15. Kent SJ et al., “Blood Distribution of SARS-CoV-2 Lipid Nanoparticle mRNA Vaccine
    in Humans,” ACS Nano 2024, 18, 39: 27077-27089. doi: 10.1021/acsnano.4c11652
  16. Kowarz E et al., “Vaccine-induced COVID-19 mimicry syndrome,” eLife 2022, 11:
    e74974. doi: https://doi.org/10.7554/eLife.74974
  17. Lamprinou M et al., “COVID-19 vaccines adverse events: potential molecular
    mechanisms,” Immunol. Res. 2023, 71: 356-372. doi: 10.1007/s12026-023-09357-5
  18. Lehmann KJ, “Impact of SARS-CoV-2 Spikes on Safety of Spike-Based COVID-19
    Vaccinations,” Immunome Res. 2024, 20, 2: 1000267. doi: 10.35248/1745-
    7580.24.20.267
  19. Lehmann KJ, “Suspected Causes of the Specific Intolerance Profile of Spike-Based
    Covid-19 Vaccines,” Med. Res. Arch 2024, 12, 9. doi: 10.18103/mra.v12i9.5704
  20. Lesgard JF et al., “Toxicity of SARS-CoV-2 Spike Protein from the Virus and Produced
    from COVID-19 mRNA or Adenoviral DNA Vaccines,” Arch Microbiol Immun 2023, 7,
    3: 121- 138. doi: 10.26502/ami.936500110
  21. Letarov AV et al., “Free SARS-CoV-2 Spike Protein S1 Particles May Play a Role in the
    Pathogenesis of COVID-19 Infection,” Biochemistry (Moscow) 2021, 86, 257–261.
    doi: https://doi.org/10.1134/S0006297921030032
  22. Nuovo JG et al., “Endothelial Cell Damage Is the Central Part of COVID-19 and a
    Mouse Model Induced by Injection of the S1 Subunit of the Spike Protein,” Ann.
    Diagn. Pathol. 2021, 51, 151682. doi: 10.1016/j.anndiagpath.2020.151682
  23. Pallas RM, “Innate and adaptative immune mechanisms of COVID-19 vaccines.
    Serious adverse events associated with SARS-CoV-2 vaccination: A systematic
    review,” Vacunas (English ed.) 2024, 25, 2: 285.e1-285.e94. doi:
    https://doi.org/10.1016/j.vacune.2024.05.002
  24. Parry PL et al., “‘Spikeopathy’: COVID-19 Spike Protein Is Pathogenic, from Both
    Virus and Vaccine mRNA,” Biomedicine 2023, 11, 8: 2287. doi:
    https://doi.org/10.3390/biomedicines11082287
  25. Pateev I et al., “Biodistribution of RNA Vaccines and of Their Products: Evidence
    from Human and Animal Studies,” Biomedicines 2024, 12, 1: 59.
    doi: https://doi.org/10.3390/biomedicines12010059
  26. Peluso MJ et al., “Plasma-based antigen persistence in the post-acute phase of
    COVID-19,” Lancet 2024, 24, 6: E345-E347. doi: 10.1016/S1473-3099(24)00211-1
  27. Rzymski P and Andrzej Fal, “To aspirate or not to aspirate? Considerations for the
    COVID-19 vaccines,” Pharmacol. Rep 2022, 74: 1223–1227. doi:
    https://doi.org/10.1007/s43440-022-00361-4
  28. Saadi F et al., “Spike glycoprotein is central to coronavirus pathogenesis-parallel
    between m-CoV and SARS-CoV-2,” Ann Neurosci. 2021, 28 (3-4): 201–218. doi:
    https://doi.org/10.1177/09727531211023755
  29. Sacco K et al., “Immunopathological signatures in multisystem inflammatory
    syndrome in children and pediatric COVID-19,” Nat. Med. 2022, 28: 1050-1062. doi:
    https://doi.org/10.1038/s41591-022-01724-3
  30. Scholkmann F and CA May, “COVID-19, post-acute COVID-19 syndrome (PACS,
    ‘long COVID’) and post-COVID-19 vaccination syndrome (PCVS, ‘post-COVIDvacsyndrome’): Similarities and di]erences,” Pathol Res Pract. 2023, 246: 154497. doi:
    https://doi.org/10.1016/j.prp.2023.154497
  31. Schwartz L et al., “Toxicity of the spike protein of COVID-19 is a redox shift
    phenomenon: A novel therapeutic approach,” Free Rad. Biol. Med. 2023, 206: 106–
  32. doi: https://doi.org/10.1016/j.freeradbiomed.2023.05.034
  33. Swank Z, et al. “Persistent Circulating Severe Acute Respiratory Syndrome
    Coronavirus 2 Spike Is Associated With Post-acute Coronavirus Disease 2019
    Sequelae,” Clin. Infect. Dis 2023, 76, 3: e487–e490. doi: 10.1093/cid/ciac722
  34. Theoharides TC, “Could SARS-CoV-2 Spike Protein Be Responsible for Long-COVID
    Syndrome?” Mol. Neurobiol. 2022, 59, 3: 1850–1861. doi: 10.1007/s12035-021-
    02696-0
  35. Theoharides TC and P. Conti, “Be Aware of SARS-CoV-2 Spike Protein: There Is More
    Than Meets the Eye,” J Biol Reg Homeostat Agents 2021, 35, 3: 833–838. doi:
    10.23812/THEO_EDIT_3_21
  36. Trougakos IP et al., “Adverse E]ects of COVID-19 mRNA Vaccines: The Spike
    Hypothesis,” Trends Mol Med. 2022, 28, 7: 542–554. doi:
    10.1016/j.molmed.2022.04.007
  37. Tyrkalska SD et al., “Di]erential proinflammatory activities of spike proteins of
    SARS-CoV-2 variants of concern,” Sci. Adv. 2022, 8, 37: eabo0732. doi:
    10.1126/sciadv.abo0732

B. ACE2

  1. Aboudounya MM and RJ Heads, “COVID-19 and Toll-Like Receptor 4 (TLR4): SARSCoV-2 May Bind and Activate TLR4 to Increase ACE2 Expression, Facilitating Entry
    and Causing Hyperinflammation,” Mediators Inflamm. 2021, 8874339. doi:
    https://doi.org/10.1155/2021/8874339
  2. Aksenova AY et al., “The increased amyloidogenicity of Spike RBD and pHdependent binding to ACE2 may contribute to the transmissibility and pathogenic
    properties of SARS-CoV-2 omicron as suggested by in silico study,” Int J Mol Sci.
    2022, 23, 21: 13502. doi: https://doi.org/10.3390/ijms232113502
  3. Angeli F et al., “COVID-19, vaccines and deficiency of ACE2 and other
    angiotensinases. Closing the loop on the ‘Spike e]ect’,” Eur J. Intern. Med. 2022,
    103: 23–28. doi: 10.1016/j.ejim.2022.06.015
  4. Baldari CT et al., “Emerging Roles of SARS-CoV-2 Spike-ACE2 in Immune Evasion
    and Pathogenesis,” Trends Immunol. 2023, 44, 6. doi: 10.1016/j.it.2023.04.001
  5. Bellucci M et al., “Post-SARS-CoV-2 infection and post-vaccine-related neurological
    complications share clinical features and the same positivity to anti-ACE2
    antibodies,” Front. Immunol. 2024, 15 (Sec. Multiple Sclerosis and
    Neuroimmunology). doi: https://doi.org/10.3389/fimmu.2024.1398028
  6. Devaux CA and L. Camoin-Jau, “Molecular mimicry of the viral spike in the SARSCoV-2 vaccine possibly triggers transient dysregulation of ACE2, leading to vascular
    and coagulation dysfunction similar to SARS-CoV-2 infection,” Viruses 2023, 15, 5:
  7. doi: https://doi.org/10.3390/v15051045
  8. Foster K et al., “Abstract 111: Cerebrovascular E]ects Of Pre/post-losartan
    Treatment In Humanized ACE2 Knock-in Mice After SARS-CoV-2 Spike Protein
    Injection,” Stroke 2023, 54. doi: https://doi.org/10.1161/str.54.suppl_1.11
  9. Gao X et al., “Spike-Mediated ACE2 Down-Regulation Was Involved in the
    Pathogenesis of SARS-CoV-2 Infection,” J. Infect. 2022, 85, 4: 418–427. doi:
    10.1016/j.jinf.2022.06.030
  10. Jabi MSA et al., “Abstract 53: Covid-19 Spike-protein Causes Cerebrovascular
    Rarefaction And Deteriorates Cognitive Functions In A Mouse Model Of Humanized
    ACE2,” Stroke 2022, 53. doi: https://doi.org/10.1161/str.53.suppl_1.53
  11. Kato Y et al., “TRPC3-Nox2 Protein Complex Formation Increases the Risk of SARSCoV-2 Spike Protein-Induced Cardiomyocyte Dysfunction through ACE2
    Upregulation,” Int. J. Mol. Sci. 2023, 24, 1: 102. doi: 10.3390/ijms24010102
  12. Ken W et al., “Low dose radiation therapy attenuates ACE2 depression and
    inflammatory cytokines induction by COVID-19 viral spike protein in human
    bronchial epithelial cells,” Int J Radiat Biol. 2022, 98, 10: 1532-1541. doi:
    https://doi.org/10.1080/09553002.2022.2055806
  13. Lei Y et al., “SARS-CoV-2 Spike Protein Impairs Endothelial Function via
    Downregulation of ACE 2,” Circulation Research 2021, 128, 9: 1323–1326. doi:
    https://doi.org/10.1161/CIRCRESAHA.121.318902
  14. Lu J and PD Sun, “High a]inity binding of SARS-CoV-2 spike protein enhances ACE2
    carboxypeptidase activity,” J. Biol. Chem 2020, 295, 52: p18579-18588. doi:
    10.1074/jbc.RA120.015303
  15. Maeda Y et al., “Di]erential Ability of Spike Protein of SARS-CoV-2 Variants to
    Downregulate ACE2,” Int. J. Mol. Sci. 2024, 25, 2: 1353. doi: 10.3390/ijms25021353
  16. Magro N et al., “Disruption of the blood-brain barrier is correlated with spike
    endocytosis by ACE2 + endothelia in the CNS microvasculature in fatal COVID-19.
    Scientific commentary on ‘Detection of blood-brain barrier disruption in brains of
    patients with COVID-19, but no evidence of brain penetration by SARS-CoV-2’,” Acta
    Neuropathol. 2024, 147, 1: 47. doi: https://doi.org/10.1007/s00401-023-02681-y
  17. Montezano AC et al., “SARS-CoV-2 spike protein induces endothelial inflammation
    via ACE2 independently of viral replication,” Sci Rep. 2023, 13, 1: 14086. doi:
    https://doi.org/10.1038/s41598-023-41115-3
  18. Satta S et al., “An engineered nano-liposome-human ACE2 decoy neutralizes SARSCoV-2 Spike protein-induced inflammation in both murine and human
    macrophages,” Theranostics 2022, 12, 6: 2639–2657. doi: 10.7150/thno.66831
  19. Solopov et al., “Alcohol increases lung angiotensin-converting enzyme 2 expression
    and exacerbates severe acute respiratory syndrome coronavirus 2 spike protein
    subunit 1-induced acute lung injury in K18-hACE2 transgenic mice,” Am J Pathol
    2022, 192, 7: 990-1000. doi: 10.1016/j.ajpath.2022.03.012
  20. Sui Y et al., “SARS-CoV-2 Spike Protein Suppresses ACE2 and Type I Interferon
    Expression in Primary Cells From Macaque Lung Bronchoalveolar Lavage,” Front.
    Immunol. 2021, 12. doi: https://doi.org/10.3389/fimmu.2021.658428
  21. Tetz G and Victor Tetz, “Prion-Like Domains in Spike Protein of SARS-CoV-2 Di]er
    across Its Variants and Enable Changes in A]inity to ACE2,” Microorganisms 2025,
    10, 2: 280. doi: https://doi.org/10.3390/microorganisms10020280
  22. Vargas-Castro R et al., “Calcitriol prevents SARS-CoV spike-induced inflammation
    in human trophoblasts through downregulating ACE2 and TMPRSS2 expression,” J
    Steroid Biochem Mol Biol 2025, 245: 106625. doi: 10.1016/j.jsbmb.2024.106625
  23. Youn JY et al., “Therapeutic application of estrogen for COVID-19: Attenuation of
    SARS-CoV-2 spike protein and IL-6 stimulated, ACE2-dependent NOX2 activation,
    ROS production and MCP-1 upregulation in endothelial cells,” Redox Biol. 2021, 46:
  24. doi: https://doi.org/10.1016/j.redox.2021.102099
  25. Zhang S et al., “SARS-CoV-2 Binds Platelet ACE2 to Enhance Thrombosis in COVID19,” J. Hematol. Oncol. 2020, 13, 120: 120. doi: 10.1186/s13045-020-00954-7

C. Amyloid, prion-like properties

  1. Aksenova AY et al., “The increased amyloidogenicity of Spike RBD and pHdependent binding to ACE2 may contribute to the transmissibility and pathogenic
    properties of SARS-CoV-2 omicron as suggested by in silico study,” Int. J. Mol. Sci.
    2022, 23, 21: 13502. doi: https://doi.org/10.3390/ijms232113502
  2. Cao S et al., “Spike Protein Fragments Promote Alzheimer’s Amyloidogenesis,” ACS
    Appl. Mater. Interfaces 2023, 15, 34: 40317-40329. doi: 10.1021/acsami.3c09815
  3. Chakrabarti SS et al., “Rapidly Progressive Dementia with Asymmetric Rigidity
    Following ChAdOx1 nCoV-19 Vaccination,” Aging Dis. 2022, 13, 3: 633-636. doi:
    10.14336/AD.2021.1102
  4. Freeborn J, “Misfolded Spike Protein Could Explain Complicated COVID-19
    Symptoms,” Medical News Today, May 26, 2022,
    https://www.medicalnewstoday.com/articles/misfolded-spike-protein-couldexplain-complicated-covid-19-symptoms
  5. Idrees D and Vijay Kumar, “SARS-CoV-2 Spike Protein Interactions with
    Amyloidogenic Proteins: Potential Clues to Neurodegeneration,” Biochemical and
    Biophysical Research Communications 2021, 554 : 94–98. doi:
    https://doi.org/10.1016/j.bbrc.2021.03.100
  6. Hillard P et al., “Abstract WP400: SARS-CoV-2 Spike Protein Accelerates Alzheimer’s
    Disease-Related Dementia Through Increased Cerebrovascular Inflammation in
    hACE2 Mice,” Stroke 2025, 56. doi: https://doi.org/10.1161/str.56.suppl_1.WP400
  7. Ma G et al., “SARS-CoV-2 Spike protein S2 subunit modulates γ-secretase and
    enhances amyloid-β production in COVID-19 neuropathy,” Cell Discov 2022, 8, 99.
    doi: https://doi.org/10.1038/s41421-022-00458-3
  8. Nahalka J, “1-L Transcription of SARS-CoV-2 Spike Protein S1 Subunit,” Int. J. Mol.
    Sci. 2024, 25, 8: 4440. doi: https://doi.org/10.3390/ijms25084440
  9. Nyström S, “Amyloidogenesis of SARS-CoV-2 Spike Protein,” J. Am. Chem.
    Soc. 2022, 144, 8945–8950. doi: https://doi.org/10.1021/jacs.2c03925
  10. Petrlova J et al., “SARS-CoV-2 spike protein aggregation is triggered by bacterial
    lipopolysaccharide,” FEBS Lett. 2022, 596:2566–2575. doi:
    https://doi.org/10.1002/1873-3468.14490
  11. Petruk G et al., “SARS-CoV-2 spike protein binds to bacterial lipopolysaccharide and
    boosts proinflammatory activity,” J. Mol. Cell Biol. 2020, 12: 916-932. doi:
    https://doi.org/10.1093/jmcb/mjaa067
  12. Rong Z et al., “Persistence of spike protein at the skull-meninges-brain axis may
    contribute to the neurological sequelae of COVID-19,” Cell Host Microbe 2024, 26:
    S1931-3128(24)00438-4. doi: 10.1016/j.chom.2024.11.007
  13. Tetz G and Victor Tetz, “Prion-Like Domains in Spike Protein of SARS-CoV-2 Di]er
    across Its Variants and Enable Changes in A]inity to ACE2,” Microorganisms 2022,
    10, 2: 280, doi: https://doi.org/10.3390/microorganisms10020280
  14. Wang J et al., “SARS-CoV-2 Spike Protein S1 Domain Accelerates α-Synuclein
    Phosphorylation and Aggregation in Cellular Models of Synucleinopathy,” Mol
    Neurobiol. 2024, 61, 4: 2446-2458. doi: 10.1007/s12035-023-03726-9

D. Autoimmune

  1. Anft M et al., “E]ect of immunoadsorption on clinical presentation and immune
    alterations in COVID-19–induced and/or aggravated ME/CFS,” Mol. Ther. 2025, 33, 6:
    2886-2899. doi: 10.1016/j.ymthe.2025.01.007
  2. Chen Y et al., “New-onset autoimmune phenomena post-COVID-19 vaccination,”
    Immunology 2022, 165, 4: 386-401. doi: https://doi.org/10.1111/imm.13443
  3. Cheng MY et al., “Clinical Research into Central Nervous System Inflammatory
    Demyelinating Diseases Related to COVID-19 Vaccines,” Diseases 2024, 12, 3: 60.
    doi: https://doi.org/10.3390/diseases12030060
  4. Diaz M et al., “SARS-CoV-2 spike peptide analysis reveals a highly conserved region
    that elicits potentially pathogenic autoantibodies: implications to pan-coronavirus
    vaccine development,” Front. Immunol. 2025, 16 (Sec. B Cell Biology). doi:
    https://doi.org/10.3389/fimmu.2025.1488388
  5. Elrashdy F et al., “Autoimmunity roots of the thrombotic events after COVID-19
    vaccination,” Autoimmun. Rev. 2021, 20, 11: 102941. doi:
    10.1016/j.autrev.2021.102941
  6. Heil M, “Self-DNA driven inflammation in COVID-19 and after mRNA-based
    vaccination: lessons for non-COVID-19 pathologies,” Front. Immunol., 2023, 14. doi:
    https://doi.org/10.3389/fimmu.2023.1259879
  7. Kanduc D, “From Anti-SARS-CoV-2 Immune Responses to COVID-19 via Molecular
    Mimicry,” Antibodies 2020, 9, 3: 33. doi: https://doi.org/10.3390/antib9030033
  8. Kanduc D and Y Shoenfeld, “Molecular mimicry between SARS-CoV-2 spike
    glycoprotein and mammalian proteomes: implications for the vaccine,” Immunol
    Res 2020, 68: 310-313. doi: https://doi.org/10.1007/s12026-020-09152-6
  9. Lee AR et al., “SARS-CoV-2 spike protein promotes inflammatory cytokine activation
    and aggravates rheumatoid arthritis,” Cell Commun Signal. 2023, 21, 1: 44. doi:
    https://doi.org/10.1186/s12964-023-01044-0
  10. Nunez-Castilla J et al., “Potential autoimmunity resulting from molecular mimicry
    between SARS-CoV-2 spike and human proteins,” Viruses 2022, 14, 7: 1415. doi:
    https://doi.org/10.3390/v14071415
  11. Polykretis P et al., “Autoimmune Inflammatory Reactions Triggered by the COVID-19
    Genetic Vaccines in Terminally Di]erentiated Tissues,” Autoimmunity 2023, 56:
  12. doi: https://doi.org/10.1080/08916934.2023.2259123
  13. Rodriguez Y et al., “Autoinflammatory and autoimmune conditions at the crossroad
    of COVID-19,” J. Autoimmun. 2020, 114: 102506. doi: 10.1016/j.jaut.2020.102506
  14. Vojdani A and D Kharrazian, “Potential antigenic cross-reactivity between SARSCoV-2 and human tissue with a possible link to an increase in autoimmune
    diseases,” Clin Immunol. 2020, 217: 108480. doi: 10.1016/j.clim.2020.108480
  15. Vojdani A et al., “Reaction of Human Monoclonal Antibodies to SARS-CoV-2
    Proteins With Tissue Antigens: Implications for Autoimmune Diseases,” Front.
    Immunol. 2021, 11 (Sec. Autoimmune and Autoinflammatory Disorders). doi:
    https://doi.org/10.3389/fimmu.2020.617089

E. Blood pressure/hypertension

  1. Angeli F et al., “The spike e]ect of acute respiratory syndrome coronavirus 2 and
    coronavirus disease 2019 vaccines on blood pressure,” Eur J Intern Med. 2023, 109:
    12-21. doi: 10.1016/j.ejim.2022.12.004
  2. Sun Q et al., “SARS-coV-2 spike protein S1 exposure increases susceptibility to
    angiotensin II-induced hypertension in rats by promoting central neuroinflammation
    and oxidative stress,” Neurochem. Res. 2023, 48, 3016–3026.
    doi: https://doi.org/10.1007/s11064-023-03949-1

F. CD147

  1. Avolio E et al., “The SARS-CoV-2 Spike Protein Disrupts Human Cardiac Pericytes
    Function through CD147 Receptor-Mediated Signalling: A Potential Non-infective
    Mechanism of COVID-19 Microvascular Disease,” Clin. Sci. 2021, 135, 24: 2667–
  2. doi: https://doi.org/10.1042/CS20210735
  3. Loh D, “The potential of melatonin in the prevention and attenuation of oxidative
    hemolysis and myocardial injury from cd147 SARS-CoV-2 spike protein receptor
    binding,” Melatonin Research 2020, 3, 3: 380-416. doi: 10.32794/mr11250069
  4. Maugeri N et al., “Unconventional CD147-Dependent Platelet Activation Elicited by
    SARS-CoV-2 in COVID-19,” J. Thromb. Haemost. 2021, 20, 2: 434–448.
    doi: 10.1111/jth.15575

G. Cell membrane permeability, barrier dysfunction

  1. Asandei A et al., “Non-Receptor-Mediated Lipid Membrane Permeabilization by the
    SARS-CoV-2 Spike Protein S1 Subunit,” ACS Appl. Mater. Interfaces 2020, 12, 50:
    55649–55658. doi: https://doi.org/10.1021/acsami.0c17044
  2. Biancatelli RMLC, et al. “The SARS-CoV-2 spike protein subunit S1 induces COVID19-like acute lung injury in Kappa18-hACE2 transgenic mice and barrier dysfunction
    in human endothelial cells,” Am. J. Physiol. Lung Cell. Mol. Physiol. 2021, 321: L477–
    L484. doi: https://doi.org/10.1152/ajplung.00223.2021
  3. Biering SB et al., “SARS-CoV-2 Spike Triggers Barrier Dysfunction and Vascular Leak
    via Integrins and TGF-β Signaling,” Nat. Commun. 2022, 13: 7630. doi:
    https://doi.org/10.1038/s41467-022-34910-5
  4. Buzhdygan TP et al., “The SARS-CoV-2 Spike Protein Alters Barrier Function in 2D
    Static and 3D Microfluidic in-Vitro Models of the Human Blood-Brain
    Barrier,” Neurobiol. Dis. 2020, 146: 105131. doi: 10.1016/j.nbd.2020.105131
  5. Cappalletti G et al., “iPSC-derived human cortical organoids display profound
    alterations of cellular homeostasis following SARS-CoV-2 infection and Spike
    protein exposure,” FASEB J 2025 39, 4: e70396. doi: 10.1096/fj.202401604RRR
  6. Chaves JCS et al., “Di]erential Cytokine Responses of APOE3 and APOE4 Blood–
    brain Barrier Cell Types to SARS-CoV-2 Spike Proteins,” J. Neuroimmune Pharmacol.
    2024, 19, 22. doi: https://doi.org/10.1007/s11481-024-10127-9
  7. Correa Y et al., “SARS-CoV-2 spike protein removes lipids from model membranes
    and interferes with the capacity of high-density lipoprotein to exchange lipids,” J.
    Colloid Interface Sci. 2021, 602: 732-739. doi: 10.1016/j.jcis.2021.06.056
  8. DeOre BJ et al., “SARS-CoV-2 Spike Protein Disrupts Blood-Brain Barrier Integrity via
    RhoA Activation,” J Neuroimmune Pharmacol. 2021, 16, 4:722-728. Doi:
    https://doi.org/10.1007/s11481-021-10029-0
  9. Fajloun Z et al., “COVID-19 and Ehlers-Danlos Syndrome: The Dangers of the Spike
    Protein of SARS-CoV-2,” Infect. Disord. Drug Targets 2023, 23, 3: 26-28. doi:
    https://doi.org/10.2174/1871526523666230104145108
  10. Guo Y and V Kanamarlapudi, “Molecular Analysis of SARS-CoV-2 Spike ProteinInduced Endothelial Cell Permeability and vWF Secretion,” Int. J. Mol. Sci. 2023, 24,
    6: 5664. doi: https://doi.org/10.3390/ijms24065664
  11. Luchini A et al., “Lipid bilayer degradation induced by SARS-CoV-2 spike protein as
    revealed by neutron reflectometry,” Sci. Rep. 2021, 11: 14867. doi:
    https://doi.org/10.1038/s41598-021-93996-x
  12. Luo Y et al., “SARS-Cov-2 spike induces intestinal barrier dysfunction through the
    interaction between CEACAM5 and Galectin-9,” Front. Immunol. 2024, 15. doi:
    https://doi.org/10.3389/fimmu.2024.1303356
  13. Magro N et al., “Disruption of the blood-brain barrier is correlated with spike
    endocytosis by ACE2 + endothelia in the CNS microvasculature in fatal COVID-19.
    Scientific commentary on ‘Detection of blood-brain barrier disruption in brains of
    patients with COVID-19, but no evidence of brain penetration by SARS-CoV-2’,” Acta
    Neuropathol. 2024, 147, 1: 47. doi: https://doi.org/10.1007/s00401-023-02681-y
  14. Raghavan S et al., “SARS-CoV-2 Spike Protein Induces Degradation of Junctional
    Proteins That Maintain Endothelial Barrier Integrity,” Front. Cardiovasc.
    Med. 2021, 8, 687783. doi: https://doi.org/10.3389/fcvm.2021.687783
  15. Ruben ML et al., “The SARS-CoV-2 spike protein subunit S1 induces COVID-19-like
    acute lung injury in Κ18-hACE2 transgenic mice and barrier dysfunction in human
    endothelial cells,” Am J Physiol Lung Cell Mol Physiol. 2021, 321, 2: L477-L484.
    doi: https://doi.org/10.1152/ajplung.00223.2021
  16. Yang K et al., “SARS-CoV-2 spike protein receptor-binding domain perturbates
    intracellular calcium homeostasis and impairs pulmonary vascular endothelial
    cells, ” Signal Transduct. Target. Ther. 2023, 8, 276. doi: 10.1038/s41392-023-01556-
  17. 8

H. Cerebral, cerebrovascular, neurologic, blood-brain barrier, cognitive

  1. Bellucci M et al., “Post-SARS-CoV-2 infection and post-vaccine-related neurological
    complications share clinical features and the same positivity to anti-ACE2
    antibodies,” Front. Immunol. 2024, 15 (Sec. Multiple Sclerosis and
    Neuroimmunology). doi: https://doi.org/10.3389/fimmu.2024.1398028
  2. Burnett FN et al., “SARS-CoV-2 Spike Protein Intensifies Cerebrovascular
    Complications in Diabetic hACE2 Mice through RAAS and TLR Signaling Activation,”
    Int. J. Mol. Sci. 2023, 24, 22: 16394. doi: https://doi.org/10.3390/ijms242216394
  3. Choi JY et al., “SARS-CoV-2 spike S1 subunit protein-mediated increase of betasecretase 1 (BACE1) impairs human brain vessel cells,” Biochem. Biophys. Res.
    Commun. 2022, 625, 20: 66-71. doi: https://doi.org/10.1016/j.bbrc.2022.07.113
  4. Clough E et al., “Mitochondrial Dynamics in SARS-COV2 Spike Protein Treated
    Human Microglia: Implications for Neuro-COVID,” J. Neuroimmune Pharmacol.
    2021, 4, 16: 770–784. doi: https://doi.org/10.1007/s11481-021-10015-6
  5. Coly M, et al., “Subacute monomelic radiculoplexus neuropathy following
    Comirnaty(c) (Pfizer-BioNTech COVID-19) vaccination: A case report,” Revue
    Neurologique 2023, 179, 6: 636-639. doi: 10.1016/j.neurol.2023.02.063
  6. DeOre BJ et al., “SARS-CoV-2 Spike Protein Disrupts Blood-Brain Barrier Integrity via
    RhoA Activation,” J Neuroimmune Pharmacol. 2021, 16, 4: 722-728. Doi:
    https://doi.org/10.1007/s11481-021-10029-0
  7. Erdogan MA, “Prenatal SARS-CoV-2 Spike Protein Exposure Induces Autism-Like
    Neurobehavioral Changes in Male Neonatal Rats,” J Neuroimmune Pharmacol.
    2023, 18, 4: 573-591. doi: 10.1007/s11481-023-10089-4
  8. Erickson MA et al., “Blood-brain barrier penetration of non-replicating SARS-CoV-2
    and S1 variants of concern induce neuroinflammation which is accentuated in a
    mouse model of Alzheimer’s disease,” Brain Behav Immun 2023, 109: 251-268. doi:
    https://doi.org/10.1016/j.bbi.2023.01.010
  9. Fontes-Dantas FL, “SARS-CoV-2 Spike Protein Induces TLR4-Mediated Long- Term
    Cognitive Dysfunction Recapitulating Post-COVID-19 Syndrome in Mice,” Cell
    Reports 2023, 42, 3: 112189. doi: https://doi.org/10.1016/j.celrep.2023.112189
  10. Foster K et al., “Abstract 111: Cerebrovascular E]ects Of Pre/post-losartan
    Treatment In Humanized ACE2 Knock-in Mice After SARS-CoV-2 Spike Protein
    Injection,” Stroke 2023, 54. doi: https://doi.org/10.1161/str.54.suppl_1.11
  11. Frank MG et al., “Exploring the immunogenic properties of SARS-CoV-2 structural
    proteins: PAMP:TLR signaling in the mediation of the neuroinflammatory and
    neurologic sequelae of COVID-19,” Brain Behav Immun 2023, 111. doi:
    https://doi.org/10.1016/j.bbi.2023.04.009
  12. Frank MG et al., “SARS-CoV-2 S1 subunit produces a protracted priming of the
    neuroinflammatory, physiological, and behavioral responses to a remote immune
    challenge: A role for corticosteroids,” Brain Behav. Immun. 2024, 121: 87-103. doi:
    https://doi.org/10.1016/j.bbi.2024.07.034
  13. Heath SP et al., “SARS-CoV-2 Spike Protein Exacerbates Thromboembolic
    Cerebrovascular Complications in Humanized ACE2 Mouse Model,” Transl Stroke
    Res. 2024. doi: https://doi.org/10.1007/s12975-024-01301-5
  14. Hillard P et al., “Abstract WP400: SARS-CoV-2 Spike Protein Accelerates Alzheimer’s
    Disease-Related Dementia Through Increased Cerebrovascular Inflammation in
    hACE2 Mice,” Stroke 2025, 56. doi: https://doi.org/10.1161/str.56.suppl_1.WP400
  15. Jabi MSA et al., “Abstract 53: Covid-19 Spike-protein Causes Cerebrovascular
    Rarefaction And Deteriorates Cognitive Functions In A Mouse Model Of Humanized
    ACE2,” Stroke 2022, 53. doi: https://doi.org/10.1161/str.53.suppl_1.53
  16. Khaddaj-Mallat R et al., “SARS-CoV-2 deregulates the vascular and immune
    functions of brain pericytes via Spike protein,” Neurobiol. Dis. 2021, 161, 105561.
    doi: https://doi.org/10.1016/j.nbd.2021.105561
  17. Kim ES et al., “Spike Proteins of SARS-CoV-2 Induce Pathological Changes in
    Molecular Delivery and Metabolic Function in the Brain Endothelial Cells,” Viruses
    2021, 13, 10: 2021. doi: https://doi.org/10.3390/v13102021
  18. Lykhmus O et al., “Immunization with 674–685 fragment of SARS-Cov-2 spike
    protein induces neuroinflammation and impairs episodic memory of
    mice,” Biochem. Biophys. Res. Commun. 2022, 622: 57–63. doi:
    https://doi.org/10.1016/j.bbrc.2022.07.016
  19. Magro N et al., “Disruption of the blood-brain barrier is correlated with spike
    endocytosis by ACE2 + endothelia in the CNS microvasculature in fatal COVID-19.
    Scientific commentary on ‘Detection of blood-brain barrier disruption in brains of
    patients with COVID-19, but no evidence of brain penetration by SARS-CoV-2’,” Acta
    Neuropathol. 2024, 147, 1: 47. doi: https://doi.org/10.1007/s00401-023-02681-y
  20. Oh J et al., “SARS-CoV-2 Spike Protein Induces Cognitive Deficit and Anxiety-Like
    Behavior in Mouse via Non-cell Autonomous Hippocampal Neuronal Death,”
    Scientific Reports 2022, 12, 5496. doi: https://doi.org/10.1038/s41598-022-09410-7
  21. Oka N et al., “SARS-CoV-2 S1 protein causes brain inflammation by reducing
    intracerebral acetylcholine production,” iScience 2023, 26, 6: 106954. doi:
    10.1016/j.isci.2023.106954
  22. Ota N et al., “Expression of SARS-CoV-2 spike protein in cerebral Arteries:
    Implications for hemorrhagic stroke Post-mRNA vaccination,” J. Clin. Neurosci.
    2025, 136: 111223. doi: https://doi.org/10.1016/j.jocn.2025.111223
  23. Peluso MJ et al., “SARS-CoV-2 and mitochondrial proteins in neural-derived
    exosomes of COVID-19,” Ann Neurol 2022, 91, 6: 772-781. doi: 10.1002/ana.26350
  24. Petrovszki D et al., “Penetration of the SARS-CoV-2 Spike Protein across the BloodBrain Barrier, as Revealed by a Combination of a Human Cell Culture Model System
    and Optical Biosensing,” Biomedicines 2022, 10, 1: 188. doi:
    https://doi.org/10.3390/biomedicines10010188
  25. Posa A, “Spike protein-related proteinopathies: A focus on the neurological side of
    spikeopathies,” Ann Anat. – Anatomischer Anzeiger 2025, 260: 152662. doi:
    https://doi.org/10.1016/j.aanat.2025.152662
  26. Rong Z et al., “Persistence of spike protein at the skull-meninges-brain axis may
    contribute to the neurological sequelae of COVID-19,” Cell Host Microbe 2024, 26:
    S1931-3128(24)00438-4. doi: 10.1016/j.chom.2024.11.007
  27. Suprewicz L et al., “Blood-brain barrier function in response to SARS-CoV-2 and its
    spike protein,” Neurol. Neurochir Pol. 2023, 57: 14–25. doi:
    10.5603/PJNNS.a2023.0014
  28. Suprewicz L et al., “Recombinant human plasma gelsolin reverses increased
    permeability of the blood-brain barrier induced by the spike protein of the SARSCoV-2 virus,” J Neuroinflamm. 2022, 19, 1: 282. doi: 10.1186/s12974-022-02642-4
  29. Wu ML et al., “Mast cell activation triggered by SARS-CoV-2 causes inflammation in
    brain microvascular endothelial cells and microglia,” Front. Cell. Infect. Microbiol.
    2024, 14. doi: https://doi.org/10.3389/fcimb.2024.1358873

I. Clinical pathology

  1. Baumeier C et al., “Intramyocardial Inflammation after COVID-19 Vaccination: An
    Endomyocardial Biopsy-Proven Case Series,” Int. J. Mol. Sci. 2022, 23: 6940. doi:
    https://doi.org/10.3390/ijms23136940
  2. Burkhardt A, “Pathology Conference: Vaccine-Induced Spike Protein Production in
    the Brain, Organs etc., now Proven,” Report24.news. 2022,
    https://report24.news/pathologie-konferenz-impfinduzierte-spike-produktion-ingehirn-u-a-organen-nun-erwiesen/
  3. Codoni G et al., “Histological and serological features of acute liver injury after
    SARS-CoV-2 vaccination,” JHP Rep. 2023, 5, 1: 100605. doi:
    10.1016/j.jhepr.2022.100605
  4. Craddock V et al., “Persistent circulation of soluble and extracellular vesicle-linked
    Spike protein in individuals with postacute sequelae of COVID-19,” J Med. Virol.
    2023, 95, 2: e28568. doi: https://doi.org/10.1002/jmv.28568
  5. De Michele M et al., “Evidence of SARS-CoV-2 Spike Protein on Retrieved Thrombi
    from COVID-19 Patients,” J. Hematol. Oncol. 2022, 15, 108. doi:
    https://doi.org/10.1186/s13045-022-01329-w
  6. De Sousa PMB et al., “Fatal Myocarditis following COVID-19 mRNA Immunization: A
    Case Report and Di]erential Diagnosis Review,” Vaccines 2024, 12, 2: 194.
    doi: https://doi.org/10.3390/vaccines12020194
  7. Gamblicher T et al., “SARS-CoV-2 spike protein is present in both endothelial and
    eccrine cells of a chilblain-like skin lesion,” J Eur Acad Dermatol Venereol. 2020, 1,
    10: e187-e189. doi: https://doi.org/10.1111/jdv.16970
  8. Gawaz A et al., “SARS-CoV-2–Induced Vasculitic Skin Lesions Are Associated with
    Massive Spike Protein Depositions in Autophagosomes,” J Invest Dermatol. 2024,
    144, 2: 369-377.e4. doi: https://doi.org/10.1016/j.jid.2023.07.018
  9. Hulscher N et al., “Autopsy findings in cases of fatal COVID-19 vaccine-induced
    myocarditis,” ESC Heart Failure 2024. doi: https://doi.org/10.1002/ehf2.14680
  10. Ko CJ et al., “Discordant anti-SARS-CoV-2 spike protein and RNA staining in
    cutaneous perniotic lesions suggests endothelial deposition of cleaved spike
    protein,” J. Cutan Pathol 2021, 48, 1: 47–52. doi: https://doi.org/10.1111/cup.13866
  11. Magen E et al., “Clinical and Molecular Characterization of a Rare Case of
    BNT162b2 mRNA COVID-19 Vaccine-Associated Myositis,” Vaccines 2022, 10: 1135.
    doi: https://doi.org/10.3390/vaccines10071135
  12. Magro N et al., “Disruption of the blood-brain barrier is correlated with spike
    endocytosis by ACE2 + endothelia in the CNS microvasculature in fatal COVID-19.
    Scientific commentary on ‘Detection of blood-brain barrier disruption in brains of
    patients with COVID-19, but no evidence of brain penetration by SARS-CoV-2’,” Acta
    Neuropathol. 2024, 147, 1: 47. doi: https://doi.org/10.1007/s00401-023-02681-y
  13. Matschke J et al., “Neuropathology of patients with COVID-19 in Germany: a postmortem case series,” Lancet Neurol. 2020, 19, 11: 919-929. doi: 10.1016/S1474-
    4422(20)30308-2
  14. Mörz M, “A Case Report: Multifocal Necrotizing Encephalitis and Myocarditis after
    BNT162b2 mRNA Vaccination against COVID-19,” Vaccines 2022, 10, 10: 1651. doi:
    https://doi.org/10.3390/vaccines10101651
  15. Rong Z et al., “Persistence of spike protein at the skull-meninges-brain axis may
    contribute to the neurological sequelae of COVID-19,” Cell Host Microbe 2024, 26:
    S1931-3128(24)00438-4. doi: 10.1016/j.chom.2024.11.007
  16. Sano H et al., “A case of persistent, confluent maculopapular erythema following a
    COVID-19 mRNA vaccination is possibly associated with the intralesional spike
    protein expressed by vascular endothelial cells and eccrine glands in the deep
    dermis,” J. Dermatol. 2023, 50: 1208–1212. doi: 10.1111/1346-8138.16816
  17. Sano S et al., “SARS-CoV-2 spike protein found in the acrosyringium and eccrine
    gland of repetitive miliaria-like lesions in a woman following mRNA vaccination,” J.
    Dermatol. 2024, 51, 9: e293-e295. doi: https://doi.org/10.1111/1346-8138.17204
  18. Santonja C et al., “COVID-19 chilblain-like lesion: immunohistochemical
    demonstration of SARS-CoV-2 spike protein in blood vessel endothelium and sweat
    gland epithelium in a polymerase chain reaction-negative patient,” Br J
    Dermatol. 2020, 183, 4: 778-780. doi: https://doi.org/10.1111/bjd.19338
  19. Soares CD et al., “Oral vesiculobullous lesions as an early sign of COVID-19:
    immunohistochemical detection of SARS-CoV-2 spike protein,” Br. J. Dermatol.
    2021, 184, 1: e6. doi: https://doi.org/10.1111/bjd.19569
  20. Wu H et al., “Molecular evidence suggesting the persistence of residual SARS-CoV-2
    and immune responses in the placentas of pregnant patients recovered from
    COVID-19,” Cell Prolif. 2021, 54, 9: e13091. doi: https://doi.org/10.1111/cpr.13091
  21. Yamamoto M et al., “Persistent varicella zoster virus infection following mRNA
    COVID-19 vaccination was associated with the presence of encoded spike protein
    in the lesion,” J. Cutan Immunol. Allergy. 2022: 1-6. doi: 10.1002/cia2.12278
  22. Yonker LM et al., “Circulating Spike Protein Detected in Post–COVID-19 mRNA
    Vaccine Myocarditis,” Circulation 2023, 147, 11. doi:
    https://doi.org/10.1161/CIRCULATIONAHA.122.061025
  23. Yonker LM et al., “Multisystem inflammatory syndrome in children is driven by
    zonulin-dependent loss of gut mucosal barrier,” J Clin Invest. 2021, 131, 14:
    e149633. doi: https://doi.org/10.1172/JCI149633

J. Clotting, platelets, hemoglobin

  1. Al-Kuraishy HM et al., “Changes in the Blood Viscosity in Patients With SARS-CoV-2
    Infection,” Front. Med. 2022, 9: 876017. doi: 10.3389/fmed.2022.876017
  2. Al-Kuraishy HM et al., “Hemolytic anemia in COVID-19,” Ann. Hematol. 2022, 101:
    1887–1895. doi: 10.1007/s00277-022-04907-7
  3. Appelbaum K et al., “SARS-CoV-2 spike-dependent platelet activation in COVID-19
    vaccine-induced thrombocytopenia,” Blood Adv. 2022, 6: 2250–2253. doi:
    10.1182/bloodadvances.2021005050
  4. Becker RC et al., “The COVID-19 thrombus: distinguishing pathological,
    mechanistic, and phenotypic features and management,” J. Thromb. Thrombolysis
    2025, 58: 15-49. doi: https://doi.org/10.1007/s11239-024-03028-4
  5. Boschi C et al., “SARS-CoV-2 Spike Protein Induces Hemagglutination: Implications
    for COVID-19 Morbidities and Therapeutics and for Vaccine Adverse E]ects,” Int. J.
    Biol. Macromol. 2022, 23, 24: 15480, doi: https://doi.org/10.3390/ijms232415480
  6. Bye AP et al., “Aberrant glycosylation of anti-SARS-CoV-2 spike IgG is a
    prothrombotic stimulus for platelets,” Blood 2021, 138, 6: 1481–9. doi:
    https://doi.org/10.1182/blood.2021011871
  7. Carnevale R et al., “Toll-Like Receptor 4-Dependent Platelet-Related Thrombosis in
    SARS-CoV-2 Infection,” Circ. Res. 2023, 132, 3: 290– 305. doi:
    https://doi.org/10.1161/CIRCRESAHA.122.321541
  8. Cossenza LC et al., “Inhibitory e]ects of SARS-CoV-2 spike protein and BNT162b2
    vaccine on erythropoietin-induced globin gene expression in erythroid precursor
    cells from patients with β-thalassemia,” Exp. Hematol. 2024, 129, 104128. doi:
    https://doi.org/10.1016/j.exphem.2023.11.002
  9. De Michele M et al., “Vaccine-induced immune thrombotic thrombocytopenia: a
    possible pathogenic role of ChAdOx1 nCoV-19 vaccine-encoded soluble SARS-CoV2 spike protein,” Haematologica 2022, 107, 7: 1687–92. doi:
    https://doi.org/10.3324/haematol.2021.280180
  10. Elrashdy F et al., “Autoimmunity roots of the thrombotic events after COVID-19
    vaccination,” Autoimmun. Rev. 2021, 20, 11: 102941. doi:
    10.1016/j.autrev.2021.102941
  11. Gasparello J et al., “Assessing the interaction between hemoglobin and the receptor
    binding domain of SARS-CoV-2 spike protein through MARTINI coarse-grained
    molecular dynamics,” Int. J. Biol. Macromol., 2023, 253: 127088.
    doi: 10.1016/j.ijbiomac.2023.127088
  12. Grobbelaar LM et al., “SARS-CoV-2 Spike Protein S1 Induces Fibrin(ogen) Resistant
    to Fibrinolysis: Implications for Microclot Formation in COVID-19,” Biosicence
    Reports 2021, 41, 8: BSR20210611. doi: https://doi.org/10.1042/BSR20210611
  13. Heath SP et al., “SARS-CoV-2 Spike Protein Exacerbates Thromboembolic
    Cerebrovascular Complications in Humanized ACE2 Mouse Model,” Transl Stroke
    Res. 2024. doi: https://doi.org/10.1007/s12975-024-01301-5
  14. Iba T and JH Levy, “The roles of platelets in COVID-19-associated coagulopathy and
    vaccine-induced immune thrombotic thrombocytopenia,” Trends Cardiovasc Med.
    2022, 32, 1: 1-9. doi: https://doi.org/10.1016/j.tcm.2021.08.012
  15. Huynh TV et al., “Spike Protein of SARS-CoV-2 Activates Cardiac Fibrogenesis
    through NLRP3 Inflammasomes and NF-κB Signaling,” Cells 2024, 13, 16: 1331.
    doi: https://doi.org/10.3390/cells13161331
  16. Iba T and JH Levy, “The roles of platelets in COVID-19-associated coagulopathy and
    vaccine-induced immune thrombotic thrombocytopenia,” Trends Cardiovasc Med.
    2022, 32, 1: 1-9. doi: https://doi.org/10.1016/j.tcm.2021.08.012
  17. Jana S et al., “Cell-free hemoglobin does not attenuate the e]ects of SARS-CoV-2
    spike protein S1 subunit in pulmonary endothelial cells,” Int. J. Mol. Sci. 2021, 22,
    16: 9041. doi: https://doi.org/10.3390/ijms22169041
  18. Kim SY et al., “Characterization of heparin and severe acute respiratory syndromerelated coronavirus 2 (SARS-CoV-2) spike glycoprotein binding interactions,” Antivir
    Res. 2020, 181: 104873. doi: https://doi.org/10.1016/j.antiviral.2020.104873
  19. Kircheis R, “Coagulopathies after Vaccination against SARS-CoV-2 May Be Derived
    from a Combined E]ect of SARS-CoV-2 Spike Protein and Adenovirus VectorTriggered Signaling Pathways,” Int. J. Mol. Sci. 2021, 22, 19: 10791. doi:
    https://doi.org/10.3390/ijms221910791
  20. Kuhn CC et al. “Direct Cryo-ET observation of platelet deformation induced by
    SARS-CoV-2 spike protein,” Nat. Commun. 2023, 14, 620. doi:
    https://doi.org/10.1038/s41467-023-36279-5
  21. Li T et al., “Platelets Mediate Inflammatory Monocyte Activation by SARS-CoV-2
    Spike Protein,” J. Clin. Invest. 2022, 132, 4: e150101. doi: 10.1172/JCI150101
  22. Maugeri N et al., “Unconventional CD147-Dependent Platelet Activation Elicited by
    SARS-CoV-2 in COVID-19,” J. Thromb. Haemost. 2021, 20, 2: 434–448, doi:
    https://doi.org/10.1111/jth.15575
  23. Ota N et al., “Expression of SARS-CoV-2 spike protein in cerebral Arteries:
    Implications for hemorrhagic stroke Post-mRNA vaccination,” J. Clin. Neurosci.
    2025, 136: 111223. doi: https://doi.org/10.1016/j.jocn.2025.111223
  24. Passariello M et al., “Interactions of Spike-RBD of SARS-CoV-2 and Platelet Factor 4:
    New Insights in the Etiopathogenesis of Thrombosis,” Int. J. Mol. Sci. 2021, 22, 16:
  25. doi: https://doi.org/10.3390/ijms22168562
  26. Perico L et al., “SARS-CoV-2 Spike Protein 1 Activates Microvascular Endothelial
    Cells and Complement System Leading to Platelet Aggregation,” Front.
    Immunol. 2022, 13, 827146. doi: https://doi.org/10.3389/fimmu.2022.827146
  27. Roytenberg R et al., “Thymidine phosphorylase mediates SARS-CoV-2 spike protein
    enhanced thrombosis in K18-hACE2TG mice,” Thromb. Res. 2024, 244, 8: 109195.
    doi: 10.1016/j.thromres.2024.109195
  28. Russo A, et al., “Implication of COVID-19 on Erythrocytes Functionality: Red Blood
    Cell Biochemical Implications and Morpho-Functional Aspects,” Int. J. Mol.
    Sci. 2022, 23, 4: 2171. doi: https://doi.org/10.3390/ijms23042171
  29. Ryu JK et al., “Fibrin drives thromboinflammation and neuropathology in COVID-19,”
    Nature 2024, 633: 905-913. doi: https://doi.org/10.1038/s41586-024-07873-4
  30. Scheim, DE. “A Deadly Embrace: Hemagglutination Mediated by SARS-CoV-2 Spike
    Protein at its 22 N-Glycosylation Sites, Red Blood Cell Surface Sialoglycoproteins,
    and Antibody,” Int. J. Mol. Sci. 2022, 23, 5: 2558. doi: 10.3390/ijms23052558
  31. Scheim DE et al., “Sialylated Glycan Bindings from SARS-CoV-2 Spike Protein to
    Blood and Endothelial Cells Govern the Severe Morbidities of COVID-19,” Int. J. Mol.
    Sci. 2023, 24, 23: 17039. doi: https://doi.org/10.3390/ijms242317039
  32. Sirsendu J et al., “Cell-Free Hemoglobin Does Not Attenuate the E]ects of SARSCoV-2 Spike Protein S1 Subunit in Pulmonary Endothelial Cells,” Int. J. Mol. Sci.,
    2021, 22, 16: 9041. doi: https://doi.org/10.3390/ijms22169041
  33. Zhang S et al., “SARS-CoV-2 Binds Platelet ACE2 to Enhance Thrombosis in COVID19,” J. Hematol. Oncol. 2020, 13, 120: 120. doi: 10.1186/s13045-020-00954-7
  34. Zhang Z et al., “SARS-CoV-2 spike protein dictates syncytium-mediated lymphocyte
    elimination,” Cell Death Diber. 2021, 28, 2765–2777. doi: 10.1038/s41418-021-
    00782-3
  35. Zheng Y et al., “SARS-CoV-2 Spike Protein Causes Blood Coagulation and
    Thrombosis by Competitive Binding to Heparan Sulfate,” Int. J. Biol. Macromol.
    2021, 193: 1124–1129. doi: https://doi.org/10.1016/j.ijbiomac.2021.10.112
  36. Zhu W et al., “Prothrombotic antibodies targeting the spike protein’s receptorbinding domain in severe COVID-19,” Blood 2025, 145, 6: 635-647. doi:
    https://doi.org/10.1182/blood.2024025010

K. Cytokines, chemokines, inteferon, interleukins

  1. Alghmadi A et al., “Altered Circulating Cytokine Profile Among mRNA-Vaccinated
    Young Adults: A Year-Long Follow-Up Study,” Immun. Inflamm. Dis. 2025, 13, 4:
    e70194. doi: https://doi.org/10.1002/iid3.70194
  2. Ao Z et al., “SARS-CoV-2 Delta spike protein enhances the viral fusogenicity and
    inflammatory cytokine production,” iScience 2022, 25, 8: 104759. doi:
    10.1016/j.isci.2022.104759
  3. Azzarone B et al., “Soluble SARS-CoV-2 Spike glycoprotein: considering some
    potential pathogenic e]ects,” Front. Immunol. 2025, 16 (Sec. Cytokines and Soluble
    Mediators in Immunity). doi: https://doi.org/10.3389/fimmu.2025.1616106
  4. Chaves JCS et al., “Di]erential Cytokine Responses of APOE3 and APOE4 Blood–
    brain Barrier Cell Types to SARS-CoV-2 Spike Proteins,” J. Neuroimmune Pharmacol.
    2024, 19, 22. doi: https://doi.org/10.1007/s11481-024-10127-9
  5. Chittasupho C et al., “Targeting spike glycoprotein S1 mediated by NLRP3
    inflammasome machinery and the cytokine releases in A549 lung epithelial cells by
    nanocurcumin,” Pharmaceuticals (Basel) 2023, 16, 6: 862. doi:
    10.3390/ph16060862
  6. Das T et al., “N-glycosylation of the SARS-CoV-2 spike protein at Asn331 and Asn343
    is involved in spike-ACE2 binding, virus entry, and regulation of IL-6,” Microbiol.
    Immunol. 2024, 68, 5: 165-178. doi: https://doi.org/10.1111/1348-0421.13121
  7. Duarte C, “Age-dependent e]ects of the recombinant spike protein/SARS-CoV-2 on
    the M-CSF- and IL-34-di]erentiated macrophages in vitro,” Biochem. Biophys. Res.
    Commun. 2021, 546: 97–102. doi: https://doi.org/10.1016/j.bbrc.2021.01.104
  8. Forsyth CB et al., “The SARS-CoV-2 S1 spike protein promotes MAPK and NF-kB
    activation in human lung cells and inflammatory cytokine production in human lung
    and intestinal epithelial cells,” Microorganisms 2022, 10, 10: 1996.
    doi: https://doi.org/10.3390/microorganisms10101996
  9. Freitas RS et al., “SARS-CoV-2 Spike antagonizes innate antiviral immunity by
    targeting interferon regulatory factor 3,” Front Cell Infect Microbiol. 2021, 11:
  10. doi: https://doi.org/10.3389/fcimb.2021.789462
  11. Gasparello J et al., “In vitro induction of interleukin-8 by SARS-CoV-2 Spike protein is
    inhibited in bronchial epithelial IB3-1 cells by a miR-93-5p agomiR,” Int.
    Immunopharmacol. 2021, 101: 108201. doi: 10.1016/j.intimp.2021.108201
  12. Gasparello J et al., “Sulforaphane inhibits the expression of interleukin-6 and
    interleukin-8 induced in bronchial epithelial IB3-1 cells by exposure to the SARSCoV-2 Spike protein,” Phytomedicine 2021, 87: 153583. doi:
    https://doi.org/10.1016/j.phymed.2021.153583
  13. Ghazanfari D et al., “Mechanistic insights into SARS-CoV-2 spike protein induction
    of the chemokine CXCL10,” Sci. Rep. 2024, 14: 11179. doi: 10.1038/s41598-024-
    61906-6
  14. Gracie NP et al., “Cellular signalling by SARS-CoV-2 spike protein,” Microbiology
    Australia 2024, 45, 1: 13-17. doi: https://doi.org/10.1071/MA24005
  15. Gu T et al., “Cytokine Signature Induced by SARS-CoV-2 Spike Protein in a Mouse
    Model,” Front. Immunol., 2021 (Sec. Inflammation). doi:
    10.3389/fimmu.2020.621441
  16. Jugler C et al, “SARS-CoV-2 Spike Protein-Induced Interleukin 6 Signaling Is Blocked
    by a Plant-Produced Anti-Interleukin 6 Receptor Monoclonal Antibody,”
    Vaccines 2021, 9, 11: 1365. https://doi.org/10.3390/vaccines9111365
  17. Kawata D et al., “Diverse pro-inflammatory ability of mutated spike protein derived
    from variant strains of SARS-CoV-2,” Cytokine 2024, 178: 156592. doi:
    https://doi.org/10.1016/j.cyto.2024.156592
  18. Lee AR et al., “SARS-CoV-2 spike protein promotes inflammatory cytokine activation
    and aggravates rheumatoid arthritis,” Cell Commun Signal. 2023, 21, 1: 44. doi:
    https://doi.org/10.1186/s12964-023-01044-0
  19. Liang S et al., “SARS-CoV-2 spike protein induces IL-18-mediated cardiopulmonary
    inflammation via reduced mitophagy,” Signal Transduct Target Ther 2023, 8, 103. doi:
    https://doi.org/10.1038/s41392-023-01368-w
  20. Liu T et al., “RS-5645 attenuates inflammatory cytokine storm induced by SARSCoV-2 spike protein and LPS by modulating pulmonary microbiota,” Int. J. Biol. Sci.
    2021, 17, 13: 3305–3319. doi: 10.7150/ijbs.63329
  21. Liu X et al., “SARS-CoV-2 spike protein-induced cell fusion activates the cGASSTING pathway and the interferon response,” Sci Signal. 2022, 15, 729: eabg8744.
    doi: 10.1126/scisignal.abg8744
  22. Niu C et al., “SARS-CoV-2 spike protein induces the cytokine release syndrome by
    stimulating T cells to produce more IL-2,” Front. Immunol. 2024, 15: 1444643. doi:
    https://doi.org/10.3389/fimmu.2024.1444643
  23. Norris B et al., “Evaluation of Glutathione in Spike Protein of SARS-CoV-2 Induced
    Immunothrombosis and Cytokine Dysregulation,” Antioxidants 2024, 13, 3: 271.
    doi: https://doi.org/10.3390/antiox13030271
  24. Olajide OA et al., “Induction of Exaggerated Cytokine Production in Human
    Peripheral Blood Mononuclear Cells by a Recombinant SARS-CoV-2 Spike
    Glycoprotein S1 and Its Inhibition by Dexamethasone,” Inflammation 2021, 44:
    1865–1877. doi: https://doi.org/10.1007/s10753-021-01464-5
  25. Park YJ et al., “D-dimer and CoV-2 spike-immune complexes contribute to the
    production of PGE2 and proinflammatory cytokines in monocytes,” PLoS
    Pathog., 2022, 18, 4: e1010468. doi: https://doi.org/10.1371/journal.ppat.1010468
  26. Patra T et al., “SARS-CoV-2 spike protein promotes IL-6 trans-signaling by activation
    of angiotensin II receptor signaling in epithelial cells,” PLoS Pathog. 2020, 16:
    e1009128. doi: https://doi.org/10.1371/journal.ppat.1009128
  27. Samsudin S et al., “SARS-CoV-2 spike protein as a bacterial lipopolysaccharide
    delivery system in an overzealous inflammatory cascade,” J. Mol. Biol. 2022, 14, 9:
    mjac058. doi: https://doi.org/10.1093/jmcb/mjac058
  28. Schroeder JT and AP Bieneman, “The S1 Subunit of the SARS-CoV-2 Spike protein
    activates human monocytes to produce cytokines linked to COVID-19: relevance to
    galectin-3,” Front Immunol. 2022, 13: 831763. doi: 10.3389/fimmu.2022.831763
  29. Sebastio AI et al., “CuMV VLPs containing the RBM from SARS-CoV-2 spike protein
    drive dendritic cell activation and Th1 polarization,” Pharmaceutics 2023, 15, 3: 825.
    doi: https://doi.org/10.3390/pharmaceutics15030825
  30. Sharma VK et al., “Nanocurcumin Potently Inhibits SARS-CoV-2 Spike ProteinInduced Cytokine Storm by Deactivation of MAPK/NF-κB Signaling in Epithelial
    Cells,” ACS Appl. Bio Mater. 2022, 5, 2: 483–491. doi: 10.1021/acsabm.1c00874
  31. Sui Y et al., “SARS-CoV-2 Spike Protein Suppresses ACE2 and Type I Interferon
    Expression in Primary Cells From Macaque Lung Bronchoalveolar Lavage,” Front.
    Immunol. 2021, 12. doi: https://doi.org/10.3389/fimmu.2021.658428
  32. Tsilioni I et al., “Nobiletin and Eriodictyol Suppress Release of IL-1β, CXCL8, IL-6,
    and MMP-9 from LPS, SARS-CoV-2 Spike Protein, and Ochratoxin A-Stimulated
    Human Microglia,” Int. J. Mol. Sci. 2025, 26, 2: 636. doi: 10.3390/ijms26020636
  33. Tsilioni S et al., “Recombinant SARS-CoV-2 spike protein and its receptor binding
    domain stimulate release of di]erent pro-inflammatory mediators via activation of
    distinct receptors on human microglia cells,” Mol Neurobiol. 2023, 60, 11: 6704–14.
    doi: 10.1007/s12035-023-03493-7
  34. Tsilioni S et al., “Recombinant SARS-CoV-2 Spike Protein Stimulates Secretion of
    Chymase, Tryptase, and IL-1beta from Human Mast Cells, Augmented by IL-33,” Int.
    J. Mol. Sci. 2023, 24, 11: 9487. doi: https://doi.org/10.3390/ijms24119487
  35. Youn JY et al., “Therapeutic application of estrogen for COVID-19: Attenuation of
    SARS-CoV-2 spike protein and IL-6 stimulated, ACE2-dependent NOX2 activation,
    ROS production and MCP-1 upregulation in endothelial cells,” Redox Biol. 2021, 46:
  36. doi: https://doi.org/10.1016/j.redox.2021.102099
  37. Zhang Q et al., “Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)
    membrane (M) and spike (S) proteins antagonize host type i interferon response,”
    Front Cell Infect Microbiol 2021, 11: 766922. doi: 10.3389/fcimb.2021.766922
  38. Zhang RG et al., “SARS-CoV-2 spike protein receptor binding domain promotes IL-6
    and IL-8 release via ATP/P2Y2 and ERK1/2 signaling pathways in human bronchial
    epithelia,” Mol. Immunol. 2024, 167: 53-61. doi: 10.1016/j.molimm.2024.02.005

L. Endothelial

  1. Bhargavan B and GD Kanmogne, “SARS-CoV-2 spike proteins and cell–cell
    communication inhibits TFPI and induces thrombogenic factors in human lung
    microvascular endothelial cells and neutrophils: implications for COVID-19
    coagulopathy pathogenesis,” Int. J. Mol. Sci. 2022, 23, 18: 10436. doi:
    https://doi.org/10.3390/ijms231810436
  2. Biancatelli RMLC, et al. “The SARS-CoV-2 spike protein subunit S1 induces COVID19-like acute lung injury in Kappa18-hACE2 transgenic mice and barrier dysfunction
    in human endothelial cells,” Am. J. Physiol. Lung Cell. Mol. Physiol. 2021, 321: L477–
    L484. doi: https://doi.org/10.1152/ajplung.00223.2021
  3. Castro-Robles B et al., “Distinct response patterns of endothelial markers to the
    BNT162b2 mRNA COVID-19 booster vaccine are associated with the spike-specific
    IgG antibody production,” Front. Immunol. 2025, 15 (Sec. Vaccines and Molecular
    Therapeutics). doi: https://doi.org/10.3389/fimmu.2024.1471401
  4. Du Preez HN et al., “COVID-19 vaccine adverse events: Evaluating the
    pathophysiology with an emphasis on sulfur metabolism and endotheliopathy,” Eur
    J Clin Invest. 2024, 54, 10: e14296. doi: https://doi.org/10.1111/eci.14296
  5. Gamblicher T et al., “SARS-CoV-2 spike protein is present in both endothelial and
    eccrine cells of a chilblain-like skin lesion,” J Eur Acad Dermatol Venereol. 2020, 1,
    10: e187-e189. doi: https://doi.org/10.1111/jdv.16970
  6. Gultom M et al., “Sustained Vascular Inflammatory E]ects of SARS-CoV-2 Spike
    Protein on Human Endothelial Cells,” Inflammation 2024. doi:
    https://doi.org/10.1007/s10753-024-02208-x
  7. Guo Y and V Kanamarlapudi, “Molecular Analysis of SARS-CoV-2 Spike ProteinInduced Endothelial Cell Permeability and vWF Secretion,” Int. J. Mol. Sci. 2023, 24,
    6: 5664. doi: https://doi.org/10.3390/ijms24065664
  8. Jana S et al., “Cell-free hemoglobin does not attenuate the e]ects of SARS-CoV-2
    spike protein S1 subunit in pulmonary endothelial cells,” Int. J. Mol. Sci. 2021, 22,
    16: 9041. doi: https://doi.org/10.3390/ijms22169041
  9. Kulkoviene G et al., “Di]erential Mitochondrial, Oxidative Stress and Inflammatory
    Responses to SARS-CoV-2 Spike Protein Receptor Binding Domain in Human Lung
    Microvascular, Coronary Artery Endothelial and Bronchial Epithelial Cells,” Int. J.
    Mol. Sci. 2024, 25, 6: 3188. doi: https://doi.org/10.3390/ijms25063188
  10. Marrone L et al., “Tirofiban prevents the e]ects of SARS-CoV-2 spike protein on
    macrophage activation and endothelial cell death,” Heliyon, 2024, 10, 15, e35341.
    doi: 10.1016/j.heliyon.2024.e35341
  11. Meyer K et al., “SARS-CoV-2 Spike Protein Induces Paracrine Senescence and
    Leukocyte Adhesion in Endothelial Cells,” J. Virol. 2021, 95: e0079421. doi:
    https://doi.org/10.1128/jvi.00794-21
  12. Montezano AC et al., “SARS-CoV-2 spike protein induces endothelial inflammation
    via ACE2 independently of viral replication,” Sci Rep. 2023, 13, 1: 14086. doi:
    https://doi.org/10.1038/s41598-023-41115-3
  13. Nuovo JG et al., “Endothelial Cell Damage Is the Central Part of COVID-19 and a
    Mouse Model Induced by Injection of the S1 Subunit of the Spike Protein,” Ann.
    Diagn. Pathol. 2021, 51, 151682. doi: 10.1016/j.anndiagpath.2020.151682
  14. Perico L et al., “SARS-CoV-2 and the spike protein in endotheliopathy,” Trends
    Microbiol. 2024, 32, 1: 53-67. doi: 10.1016/j.tim.2023.06.004
  15. Perico L et al., “SARS-CoV-2 Spike Protein 1 Activates Microvascular Endothelial
    Cells and Complement System Leading to Platelet Aggregation,” Front.
    Immunol. 2022, 13, 827146. doi: https://doi.org/10.3389/fimmu.2022.827146
  16. Raghavan S et al., “SARS-CoV-2 Spike Protein Induces Degradation of Junctional
    Proteins That Maintain Endothelial Barrier Integrity,” Front. Cardiovasc.
    Med. 2021, 8, 687783. doi: https://doi.org/10.3389/fcvm.2021.687783
  17. Ratajczak MZ et al., “SARS-CoV-2 Entry Receptor ACE2 Is Expressed on Very Small
    CD45- Precursors of Hematopoietic and Endothelial Cells and in Response to Virus
    Spike Protein Activates the Nlrp3 Inflammasome,” Stem Cell Rev Rep. 2021, 17, 1:
    266-277. doi: https://doi.org/10.1007/s12015-020-10010-z
  18. Robles JP et al., “The Spike Protein of SARS-CoV-2 Induces Endothelial
    Inflammation through Integrin α5β1 and NF-κB Signaling,” J. Biol. Chem. 2022, 298,
    3: 101695. doi: https://doi.org/10.1016/j.jbc.2022.101695
  19. Rotoli BM et al., “Endothelial cell activation by SARS-CoV-2 spike S1 protein: A
    crosstalk between endothelium and innate immune cells,” Biomedicines 2021, 9, 9:
  20. doi: https://doi.org/10.3390/biomedicines9091220
  21. Ruben ML et al., “The SARS-CoV-2 spike protein subunit S1 induces COVID-19-like
    acute lung injury in Κ18-hACE2 transgenic mice and barrier dysfunction in human
    endothelial cells,” Am J Physiol Lung Cell Mol Physiol. 2021, 321, 2: L477-L484.
    doi: https://doi.org/10.1152/ajplung.00223.2021
  22. Sano H et al., “A case of persistent, confluent maculopapular erythema following a
    COVID-19 mRNA vaccination is possibly associated with the intralesional spike
    protein expressed by vascular endothelial cells and eccrine glands in the deep
    dermis,” J. Dermatol. 2023, 50: 1208–1212. doi: 10.1111/1346-8138.16816
  23. Santonja C et al., “COVID-19 chilblain-like lesion: immunohistochemical
    demonstration of SARS-CoV-2 spike protein in blood vessel endothelium and sweat
    gland epithelium in a polymerase chain reaction-negative patient,” Br J
    Dermatol. 2020, 183, 4: 778-780. doi: https://doi.org/10.1111/bjd.19338
  24. Scheim DE et al., “Sialylated Glycan Bindings from SARS-CoV-2 Spike Protein to
    Blood and Endothelial Cells Govern the Severe Morbidities of COVID-19,” Int. J. Mol.
    Sci. 2023, 24, 23: 17039. doi: https://doi.org/10.3390/ijms242317039
  25. Sirsendu J et al., “Cell-Free Hemoglobin Does Not Attenuate the E]ects of SARSCoV-2 Spike Protein S1 Subunit in Pulmonary Endothelial Cells,” Int. J. Mol. Sci.,
    2021, 22, 16: 9041. doi: https://doi.org/10.3390/ijms22169041
  26. Stern B et al., “SARS-CoV-2 spike protein induces endothelial dysfunction in 3D
    engineered vascular networks,” J. Biomed. Mater. Res. A. 2023, 112, 4: 524-533. doi:
    https://doi.org/10.1002/jbm.a.37543
  27. Villacampa A et al., “SARS-CoV-2 S protein activates NLRP3 inflammasome and
    deregulates coagulation factors in endothelial and immune cells,” Cell Commun.
    Signal. 2024, 22, 38. doi: https://doi.org/10.1186/s12964-023-01397-6
  28. Wu ML et al., “Mast cell activation triggered by SARS-CoV-2 causes inflammation in
    brain microvascular endothelial cells and microglia,” Front. Cell. Infect. Microbiol.
    2024, 14. doi: https://doi.org/10.3389/fcimb.2024.1358873
  29. Yang K et al., “SARS-CoV-2 spike protein receptor-binding domain perturbates
    intracellular calcium homeostasis and impairs pulmonary vascular endothelial
    cells,” Signal Transduct. Target. Ther. 2023, 8, 276. doi: 10.1038/s41392-023-01556-
    8
  30. Youn JY et al., “Therapeutic application of estrogen for COVID-19: Attenuation of
    SARS-CoV-2 spike protein and IL-6 stimulated, ACE2-dependent NOX2 activation,
    ROS production and MCP-1 upregulation in endothelial cells,” Redox Biol. 2021, 46:
  31. doi: https://doi.org/10.1016/j.redox.2021.102099
  32. Zekri-Nechar K et al., “Spike Protein Subunits of SARS-CoV-2 Alter Mitochondrial
    Metabolism in Human Pulmonary Microvascular Endothelial Cells: Involvement of
    Factor Xa,” Dis. Markers 2022, 1118195. doi: https://doi.org/10.1155/2022/1118195

M. Gastrointestinal

  1. Forsyth CB et al., “The SARS-CoV-2 S1 spike protein promotes MAPK and NF-kB
    activation in human lung cells and inflammatory cytokine production in human lung
    and intestinal epithelial cells,” Microorganisms 2022, 10, 10: 1996.
    doi: https://doi.org/10.3390/microorganisms10101996
  2. Li Z et al., “SARS-CoV-2 pathogenesis in the gastrointestinal tract mediated by
    Spike-induced intestinal inflammation,” Precis. Clin. Med. 2024, 7, 1: pbad034. doi:
    https://doi.org/10.1093/pcmedi/pbad034
  3. Luo Y et al., “SARS-Cov-2 spike induces intestinal barrier dysfunction through the
    interaction between CEACAM5 and Galectin-9,” Front. Immunol. 2024, 15. doi:
    https://doi.org/10.3389/fimmu.2024.1303356
  4. Nascimento RR et al., “SARS-CoV-2 Spike protein triggers gut impairment since
    mucosal barrier to innermost layers: From basic science to clinical relevance,”
    Mucosal Immunol. 2024, 17, 4: 565-583. doi: 10.1016/j.mucimm.2024.03.00
  5. Yilmaz A et al., “Di]erential proinflammatory responses of colon epithelial cells to
    SARS-CoV-2 spike protein and Pseudomonas aeruginosa lipopolysaccharide,” Turk J
    Biochem. 2024. doi: https://doi.org/10.1515/tjb-2024-0144
  6. Yonker LM et al., “Multisystem inflammatory syndrome in children is driven by
    zonulin-dependent loss of gut mucosal barrier,” J Clin Invest. 2021, 131, 14:
    e149633. doi: https://doi.org/10.1172/JCI149633
  7. Zeng FM et al., “SARS-CoV-2 spike spurs intestinal inflammation via VEGF
    production in enterocytes,” EMBO Mol Med. 2022, 14: e14844. doi:
    https://doi.org/10.15252/emmm.202114844
  8. Zollner A et al., “Postacute COVID-19 is Characterized by Gut Viral Antigen
    Persistence in Inflammatory Bowel Diseases,” Gastroenterology 2022, 163, 2: 495-
    506.e8. doi: https://doi.org/10.1053/j.gastro.2022.04.037

N. Immune dysfunction

  1. Baldari CT et al., “Emerging Roles of SARS-CoV-2 Spike-ACE2 in Immune Evasion
    and Pathogenesis,” Trends Immunol. 2023, 44, 6. doi: 10.1016/j.it.2023.04.001
  2. Bocquet-Garcon A, “Impact of the SARS-CoV-2 Spike Protein on the Innate Immune
    System: A Review,” Cureus 2024, 16, 3: e57008. doi: 10.7759/cureus.57008
  3. Delgado JF et al., “SARS-CoV-2 spike protein vaccine-induced immune imprinting
    reduces nucleocapsid protein antibody response in SARS-CoV-2 infection,” J.
    Immunol. Res. 2022: 8287087. doi: https://doi.org/10.1155/2022/8287087
  4. Freitas RS et al., “SARS-CoV-2 Spike antagonizes innate antiviral immunity by
    targeting interferon regulatory factor 3,” Front Cell Infect Microbiol. 2021, 11:
  5. doi: https://doi.org/10.3389/fcimb.2021.789462
  6. Irrgang P et al., “Class switch toward noninflammatory, spike-specific IgG4
    antibodies after repeated SARS-CoV-2 mRNA vaccination,” Sci. Immunol. 2022, 8,
  7. doi: 10.1126/sciimmunol.ade2798
  8. Kim MJ et al., “The SARS-CoV-2 spike protein induces lung cancer migration and
    invasion in a TLR2-dependent manner,” Cancer Commun (London), 2023, 44, 2:
    273–277. doi: https://doi.org/10.1002/cac2.12485
  9. Onnis A et al., “SARS-CoV-2 Spike protein suppresses CTL-mediated killing by
    inhibiting immune synapse assembly,” J Exp Med 2023, 220, 2: e20220906. doi:
    https://doi.org/10.1084/jem.20220906
  10. Tu TH et al., “The identification of a SARs-CoV2 S2 protein derived peptide with
    super-antigen-like stimulatory properties on T-cells,” Commun. Biol. 2025, 8, 14.
    doi: https://doi.org/10.1038/s42003-024-07350-8

O. Macrophages, monocytes, neutrophils

  1. Ahn WM et al., “SARS-CoV-2 Spike Protein Stimulates Macropinocytosis in Murine
    and Human Macrophages via PKC-NADPH Oxidase Signaling,”
    Antioxidants 2024, 13, 2: 175. doi: https://doi.org/10.3390/antiox13020175
  2. Ait-Belkacem I et al., “SARS-CoV-2 spike protein induces a di]erential monocyte
    activation that may contribute to age bias in COVID-19 severity,” Sci. Rep. 2022, 12:
  3. doi: https://doi.org/10.1038/s41598-022-25259-2
  4. Barhoumi T et al., “SARS-CoV-2 coronavirus Spike protein-induced apoptosis,
    inflammatory, and oxidative stress responses in THP-1-like-macrophages: potential
    role of angiotensin-converting enzyme inhibitor (perindopril),” Front. Immunol.
    2021, 12: 728896. doi: https://doi.org/10.3389/fimmu.2021.728896
  5. Bortolotti D et al., “SARS-CoV-2 Spike 1 Protein Controls Natural Killer Cell
    Activation via the HLA-E/NKG2A Pathway,” Cells 2020, 9, 9: 1975.
    doi: https://doi.org/10.3390/cells9091975
  6. Cao X et al., “Spike protein of SARS-CoV-2 activates macrophages and contributes
    to induction of acute lung inflammation in male mice,” FASEB J. 2021, 35, e21801.
    doi: https://doi.org/10.1096/fj.202002742RR
  7. Chiok K et al., “Proinflammatory Responses in SARS-CoV-2 and Soluble Spike
    Glycoprotein S1 Subunit Activated Human Macrophages,” Viruses 2023, 15, 3: 754.
    doi: https://doi.org/10.3390/v15030754
  8. Cory TJ et al., “Metformin Suppresses Monocyte Immunometabolic Activation by
    SARS-CoV-2 Spike Protein Subunit 1,” Front. Immunol. 2021, 12 (Sec. Cytokines and
    Soluble Mediators in Immunity): 733921. doi: 10.3389/fimmu.2021.733921
  9. Del Re A et al., “Ultramicronized Palmitoylethanolamide Inhibits NLRP3
    Inflammasome Expression and Pro-Inflammatory Response Activated by SARSCoV-2 Spike Protein in Cultured Murine Alveolar Macrophages,”
    Metabolites 2021, 11, 9: 592. doi: https://doi.org/10.3390/metabo11090592
  10. Duarte C, “Age-dependent e]ects of the recombinant spike protein/SARS-CoV-2 on
    the M-CSF- and IL-34-di]erentiated macrophages in vitro,” Biochem. Biophys. Res.
    Commun. 2021, 546: 97–102. doi: https://doi.org/10.1016/j.bbrc.2021.01.104
  11. Fajloun Z et al., “Unveiling the Role of SARS-CoV-2 or mRNA Vaccine Spike Protein in
    Macrophage Activation Syndrome (MAS),” Infect. Disord. Drug Targets 2025, 25, 2:
    E220724232138. doi: https://doi.org/10.2174/0118715265341206240722050403
  12. Karwaciak I et al., “Nucleocapsid and Spike Proteins of the Coronavirus Sars-Cov-2
    Induce Il6 in Monocytes and Macrophages—Potential Implications for Cytokine
    Storm Syndrome,” Vaccines 2021, 9, 1, 54: 1–10. doi: 10.3390/vaccines9010054
  13. Li T et al., “Platelets Mediate Inflammatory Monocyte Activation by SARS-CoV-2
    Spike Protein,” J. Clin. Invest. 2022, 132, 4: e150101. doi: 10.1172/JCI150101
  14. Liu Y et al., “The recombinant spike S1 protein induces injury and inflammation in
    co-cultures of human alveolar epithelial cells and macrophages,” PLoS ONE 2025,
    20, 2: e0318881. doi: https://doi.org/10.1371/journal.pone.0318881
  15. Loh JT et al., “Dok3 restrains neutrophil production of calprotectin during TLR4
    sensing of SARS-CoV-2 spike protein,” Front. Immunol. 2022, 13 (Sec. Molecular
    Innate Immunity). doi: https://doi.org/10.3389/fimmu.2022.996637
  16. Marrone L et al., “Tirofiban prevents the e]ects of SARS-CoV-2 spike protein on
    macrophage activation and endothelial cell death,” Heliyon, 2024, 10, 15: e35341.
    doi: 10.1016/j.heliyon.2024.e35341
  17. Miller GM et al., “SARS-CoV-2 and SARS-CoV-2 Spike protein S1 subunit Trigger
    Proinflammatory Response in Macrophages in the Absence of Productive Infection,”
    J. Immunol. 2023, 210 (1_Supplement): 71.30. doi:
    10.4049/jimmunol.210.Supp.71.30
  18. Onnis A et al., “SARS-CoV-2 Spike protein suppresses CTL-mediated killing by
    inhibiting immune synapse assembly,” J Exp Med 2023, 220, 2: e20220906. doi:
    https://doi.org/10.1084/jem.20220906
  19. Palestra F et al. “SARS-CoV-2 Spike Protein Activates Human Lung
    Macrophages,” Int. J. Mol. Sci. 2023, 24, 3: 3036. doi: 10.3390/ijms24033036
  20. Park C et al., “Murine alveolar Macrophages Rapidly Accumulate intranasally
    Administered SARS-CoV-2 Spike Protein leading to neutrophil Recruitment and
    Damage,” Elife 2024, 12, RP86764. doi: https://doi.org/10.7554/eLife.86764.3
  21. Park YJ et al., “D-dimer and CoV-2 spike-immune complexes contribute to the
    production of PGE2 and proinflammatory cytokines in monocytes,” PLoS
    Pathog. 2022, 18, 4: e1010468. doi: https://doi.org/10.1371/journal.ppat.1010468
  22. Park YJ et al., “Pyrogenic and inflammatory mediators are produced by polarized M1
    and M2 macrophages activated with D-dimer and SARS-CoV-2 spike immune
    complexes,” Cytokine 2024, 173: 156447. doi: 10.1016/j.cyto.2023.156447
  23. Patterson BK et al., “Detection of S1 spike protein in CD16+ monocytes up to 245
    days in SARS-CoV-2-negative post-COVID-19 vaccine syndrome (PCVS) individuals,”
    Hum Vaccin Immunother. 2025, 21, 1: 2494934. doi:
    10.1080/21645515.2025.2494934
  24. Patterson BK et al., “Persistence of SARS CoV-2 S1 Protein in CD16+ Monocytes in
    Post-Acute Sequelae of COVID-19 (PASC) up to 15 Months Post-Infection,” Front.
    Immunol. 12 (Sec. Viral Immunology). doi: 10.3389/fimmu.2021.746021
  25. Pence B, “Recombinant SARS-CoV-2 Spike Protein Mediates Glycolytic and
    Inflammatory Activation in Human Monocytes,” Innov Aging 2020, 4, sp. 1: 955. doi:
    https://doi.org/10.1093/geroni/igaa057.3493
  26. Satta S et al., “An engineered nano-liposome-human ACE2 decoy neutralizes SARSCoV-2 Spike protein-induced inflammation in both murine and human
    macrophages,” Theranostics 2022, 12, 6: 2639–2657. doi: 10.7150/thno.66831
  27. Schroeder JT and AP Bieneman, “The S1 Subunit of the SARS-CoV-2 Spike protein
    activates human monocytes to produce cytokines linked to COVID-19: relevance to
    galectin-3,” Front Immunol. 2022, 13: 831763. doi: 10.3389/fimmu.2022.831763
  28. Shirato K and Takako Kizaki, “SARS-CoV-2 Spike Protein S1 Subunit Induces Proinflammatory Responses via Toll-Like Receptor 4 Signaling in Murine and Human
    Macrophages,” Heliyon 2021, 7, 2: e06187. doi: 10.1016/j.heliyon.2021.e06187
  29. Theobald SJ et al., “Long-lived macrophage reprogramming drives spike proteinmediated inflammasome activation in COVID-19,” EMBO Mol. Med. 2021, 13:
    e14150. doi: https://doi.org/10.15252/emmm.202114150
  30. Vettori M et al., “E]ects of Di]erent Types of Recombinant SARS-CoV-2 Spike
    Protein on Circulating Monocytes’ Structure,” Int. J. Mol. Sci. 2023, 24, 11: 9373.
    doi: https://doi.org/10.3390/ijms24119373
  31. Youn YJ et al., “Nucleocapsid and spike proteins of SARS-CoV-2 drive neutrophil
    extracellular trap formation,” Immune Netw. 2021, 21, 2: e16. doi:
    https://doi.org/10.4110/in.2021.21.e16
  32. Zaki H and S Khan, “SARS-CoV-2 spike protein induces inflammatory molecules
    through TLR2 in macrophages and monocytes,” J. Immunol. 2021, 206
    (1_supplement): 62.07. doi: https://doi.org/10.4049/jimmunol.206.Supp.62.07

P. MAPK/NF-kB

  1. Arjsri P et al., “Hesperetin from root extract of Clerodendrum petasites S. Moore
    inhibits SARS-CoV-2 spike protein S1 subunit-induced Nlrp3 inflammasome in A549
    lung cells via modulation of the Akt/Mapk/Ap-1 pathway,” Int. J. Mol. Sci. 2022, 23,
    18: 10346. doi: https://doi.org/10.3390/ijms231810346
  2. Bhattacharyya S and JK Tobacman, “SARS-CoV-2 spike protein-ACE2 interaction
    increases carbohydrate sulfotransferases and reduces N-acetylgalactosamine-4-
    sulfatase by p38 MAPK,” Signal Transduct Target Ther 2024, 9, 39. doi:
    https://doi.org/10.1038/s41392-024-01741-3
  3. Forsyth CB et al., “The SARS-CoV-2 S1 spike protein promotes MAPK and NF-kB
    activation in human lung cells and inflammatory cytokine production in human lung
    and intestinal epithelial cells,” Microorganisms 2022, 10, 10: 1996.
    doi: https://doi.org/10.3390/microorganisms10101996
  4. Johnson EL et al., “The S1 spike protein of SARS-CoV-2 upregulates the ERK/MAPK
    signaling pathway in DC-SIGN-expressing THP-1 cells,” Cell Stress Chaperones
    2024, 29, 2: 227-234. doi: https://doi.org/10.1016/j.cstres.2024.03.002
  5. Khan S et al., “SARS-CoV-2 Spike Protein Induces Inflammation via TLR2-Dependent
    Activation of the NF-κB Pathway,” eLife 2021, 10: e68563. doi: 10.7554/elife.68563
  6. Kircheis R and O Planz, “Could a Lower Toll-like Receptor (TLR) and NF-κB Activation
    Due to a Changed Charge Distribution in the Spike Protein Be the Reason for the
    Lower Pathogenicity of Omicron?” Int. J. Mol. Sci. 2022, 23, 11: 5966. doi:
    https://doi.org/10.3390/ijms23115966
  7. Kyriakopoulos AM et al., “Mitogen Activated Protein Kinase (MAPK) Activation, p53,
    and Autophagy Inhibition Characterize the Severe Acute Respiratory Syndrome
    Coronavirus 2 (SARS-CoV-2) Spike Protein Induced Neurotoxicity,” Cureus 2022, 14,
    12: e32361. doi: 10.7759/cureus.32361
  8. Robles JP et al., “The Spike Protein of SARS-CoV-2 Induces Endothelial
    Inflammation through Integrin α5β1 and NF-κB Signaling,” J. Biol. Chem. 2022, 298,
    3: 101695. doi: https://doi.org/10.1016/j.jbc.2022.101695
  9. Sharma VK et al., “Nanocurcumin Potently Inhibits SARS-CoV-2 Spike ProteinInduced Cytokine Storm by Deactivation of MAPK/NF-κB Signaling in Epithelial
    Cells,” ACS Appl. Bio Mater. 2022, 5, 2: 483–491. doi: 10.1021/acsabm.1c00874
  10. Bhattacharyya S and JK Tobacman, “SARS-CoV-2 spike protein-ACE2 interaction
    increases carbohydrate sulfotransferases and reduces N-acetylgalactosamine-4-
    sulfatase by p38 MAPK,” Signal Transduct Target Ther 2024, 9, 39. doi:
    https://doi.org/10.1038/s41392-024-01741-3

Q. Mast cells

  1. Cao JB et al., “Mast cell degranulation-triggered by SARS-CoV-2 induces trachealbronchial epithelial inflammation and injury,” Virol. Sin. 2024, 39, 2: 309-318. doi:
    https://doi.org/10.1016/j.virs.2024.03.001
  2. Fajloun Z et al., “SARS-CoV-2 or Vaccinal Spike Protein can Induce Mast Cell
    Activation Syndrome (MCAS),” Infect Disord Drug Targets, 2025, 25, 1:
    e300424229561. doi: 10.2174/0118715265319896240427045026
  3. Tsilioni S et al., “Recombinant SARS-CoV-2 Spike Protein Stimulates Secretion of
    Chymase, Tryptase, and IL-1beta from Human Mast Cells, Augmented by IL-33,” Int.
    J. Mol. Sci. 2023, 24, 11: 9487. doi: https://doi.org/10.3390/ijms24119487
  4. Wu ML et al., “Mast cell activation triggered by SARS-CoV-2 causes inflammation in
    brain microvascular endothelial cells and microglia,” Front. Cell. Infect. Microbiol.,
    2024, 14. doi: https://doi.org/10.3389/fcimb.2024.1358873

R. Microglia

  1. Alves V et al., “SARS-CoV-2 Spike protein alters microglial purinergic signaling
    Front. Immunol. 2023, 14: 1158460. doi: 10.3389/fimmu.2023.1158460
  2. Chang MH et al., “SARS-CoV-2 Spike Protein 1 Causes Aggregation of α-Synuclein
    via Microglia-Induced Inflammation and Production of Mitochondrial ROS: Potential
    Therapeutic Applications of Metformin,” Biomedicines 2024, 12, 6: 1223. doi:
    https://doi.org/10.3390/biomedicines12061223
  3. Clough E et al., “Mitochondrial Dynamics in SARS-COV2 Spike Protein Treated
    Human Microglia: Implications for Neuro-COVID,” J. Neuroimmune Pharmacol.
    2021, 16, 4: 770–784. doi: https://doi.org/10.1007/s11481-021-10015-6
  4. Frank MG et al., “SARS-CoV-2 Spike S1 Subunit Induces Neuroinflammatory,
    Microglial and Behavioral Sickness Responses: Evidence of PAMP-Like Properties,”
    Brain Behav. Immun. 2022, 100: 267277. doi: 10.1016/j.bbi.2021.12.007
  5. Kempuraj D et al., “Long COVID elevated MMP-9 and release from microglia by
    SARS-CoV-2 Spike protein,” Transl. Neurosci. 2024, 15: 20220352. doi:
    https://doi.org/10.1515/tnsci-2022-0352
  6. Mishra R and AC Banerjea, “SARS-CoV-2 Spike targets USP33-IRF9 axis via
    exosomal miR-148a to activate human microglia,” Front. Immunol. 2021, 12:
  7. doi: https://doi.org/10.3389/fimmu.2021.656700
  8. Olajide OA et al., “SARS-CoV-2 spike glycoprotein S1 induces neuroinflammation in
    BV-2 microglia,”Mol. Neurobiol. 2022, 59: 445-458. doi: 10.1007/s12035-021-
    02593-6
  9. Tsilioni I et al., “Nobiletin and Eriodictyol Suppress Release of IL-1β, CXCL8, IL-6,
    and MMP-9 from LPS, SARS-CoV-2 Spike Protein, and Ochratoxin A-Stimulated
    Human Microglia,” Int. J. Mol. Sci. 2025, 26, 2: 636. doi:
    https://doi.org/10.3390/ijms26020636
  10. Tsilioni S et al., “Recombinant SARS-CoV-2 spike protein and its receptor binding
    domain stimulate release of di]erent pro-inflammatory mediators via activation of
    distinct receptors on human microglia cells,” Mol Neurobiol. 2023, 60, 11: 6704–14.
    doi: 10.1007/s12035-023-03493-7
  11. Wu ML et al., “Mast cell activation triggered by SARS-CoV-2 causes inflammation in
    brain microvascular endothelial cells and microglia,” Front. Cell. Infect. Microbiol.
    2024, 14. doi: https://doi.org/10.3389/fcimb.2024.1358873

S. Microvascular

  1. Avolio E et al., “The SARS-CoV-2 Spike Protein Disrupts Human Cardiac Pericytes
    Function through CD147 Receptor-Mediated Signalling: A Potential Non-infective
    Mechanism of COVID-19 Microvascular Disease,” Clin. Sci. 2021, 135, 24: 2667–
  2. doi: https://doi.org/10.1042/CS20210735
  3. Bhargavan B and GD Kanmogne, “SARS-CoV-2 spike proteins and cell–cell
    communication inhibits TFPI and induces thrombogenic factors in human lung
    microvascular endothelial cells and neutrophils: implications for COVID-19
    coagulopathy pathogenesis,” Int. J. Mol. Sci. 2022, 23, 18: 10436. doi:
    https://doi.org/10.3390/ijms231810436
  4. Kulkoviene G et al., “Di]erential Mitochondrial, Oxidative Stress and Inflammatory
    Responses to SARS-CoV-2 Spike Protein Receptor Binding Domain in Human Lung
    Microvascular, Coronary Artery Endothelial and Bronchial Epithelial Cells,” Int. J.
    Mol. Sci. 2024, 25, 6: 3188. doi: https://doi.org/10.3390/ijms25063188
  5. Magro N et al., “Disruption of the blood-brain barrier is correlated with spike
    endocytosis by ACE2 + endothelia in the CNS microvasculature in fatal COVID-19.
    Scientific commentary on ‘Detection of blood-brain barrier disruption in brains of
    patients with COVID-19, but no evidence of brain penetration by SARS-CoV-2’,” Acta
    Neuropathol. 2024, 147, 1: 47. doi: https://doi.org/10.1007/s00401-023-02681-y
  6. Panigrahi S et al., “SARS-CoV-2 Spike Protein Destabilizes Microvascular
    Homeostasis,” Microbiol Spectr. 2021, 9, 3: e0073521. doi:
    10.1128/Spectrum.00735-21
  7. Perico L et al., “SARS-CoV-2 Spike Protein 1 Activates Microvascular Endothelial
    Cells and Complement System Leading to Platelet Aggregation,” Front.
    Immunol. 2022, 13, 827146. doi: https://doi.org/10.3389/fimmu.2022.827146
  8. Wu ML et al., “Mast cell activation triggered by SARS-CoV-2 causes inflammation in
    brain microvascular endothelial cells and microglia,” Front. Cell. Infect. Microbiol.
    2024, 14. doi: https://doi.org/10.3389/fcimb.2024.1358873
  9. Zekri-Nechar K et al., “Spike Protein Subunits of SARS-CoV-2 Alter Mitochondrial
    Metabolism in Human Pulmonary Microvascular Endothelial Cells: Involvement of
    Factor Xa,” Dis. Markers 2022: 1118195. doi: https://doi.org/10.1155/2022/1118195

T. MIS-C, pediatric

  1. Chang A et al., “Recovery from antibody-mediated biliary ductopenia and
    multiorgan inflammation after COVID-19 vaccination,” NPJ Vaccines 2024, 9, 75.
    doi: https://doi.org/10.1038/s41541-024-00861-9
  2. Colmenero I et al., “SARS-CoV-2 endothelial infection causes COVID-19
    chilblains: histopathological, immunohistochemical and ultrastructural study of
    seven paediatric cases,” Br J Dermatol. 2020, 183: 729-737. doi:
    https://doi.org/10.1111/bjd.19327/
  3. Dadonite B et al., “SARS-CoV-2 neutralizing antibody specificities di]er
    dramatically between recently infected infants and immune-imprinted
    individuals,” J. Virol. 2025, 99, 4. doi: https://doi.org/10.1128/jvi.00109-25
  4. De Sousa PMB et al., “Fatal Myocarditis following COVID-19 mRNA Immunization:
    A Case Report and Di]erential Diagnosis Review,” Vaccines 2024, 12, 2: 194.
    doi: https://doi.org/10.3390/vaccines12020194
  5. Mayordomo-Colunga J et al., “SARS-CoV-2 spike protein in intestinal cells of a
    patient with coronavirus disease 2019 multisystem inflammatory syndrome,” J
    Pediatr. 2022, 243: 214-18e215. doi: https://doi.org/10.1016/j.jpeds.2021.11.058
  6. Rivas MN et al., “COVID-19–associated multisystem inflammatory syndrome in
    children (MIS-C): A novel disease that mimics toxic shock syndrome—the
    superantigen hypothesis,” J Allergy Clin Immunol 2021, 147, 1: 57-59.
    doi: 10.1016/j.jaci.2020.10.008
  7. Rivas MN et al., “Multisystem Inflammatory Syndrome in Children and Long
    COVID: The SARS-CoV-2 Viral Superantigen Hypothesis,” Front Immunol. 2022,
    13 (Sec. Molecular Innate Immunity). doi: 10.3389/fimmu.2022.941009
  8. Sacco K et al., “Immunopathological signatures in multisystem inflammatory
    syndrome in children and pediatric COVID-19,” Nat. Med. 2022, 28: 1050-1062.
    doi: https://doi.org/10.1038/s41591-022-01724-3
  9. Yonker LM et al., “Multisystem inflammatory syndrome in children is driven by
    zonulin-dependent loss of gut mucosal barrier,” J Clin Invest. 2021, 131, 14:
    e149633. doi: https://doi.org/10.1172/JCI149633

U. Mitochondria/metabolism

  1. Cao X et al., “The SARS-CoV-2 spike protein induces long-term transcriptional
    perturbations of mitochondrial metabolic genes, causes cardiac fibrosis, and
    reduces myocardial contractile in obese mice,” Mol. Metab. 2023, 74, 101756. doi:
    https://doi.org/10.1016/j.molmet.2023.101756
  2. Chang MH et al., “SARS-CoV-2 Spike Protein 1 Causes Aggregation of α-Synuclein
    via Microglia-Induced Inflammation and Production of Mitochondrial ROS: Potential
    Therapeutic Applications of Metformin,” Biomedicines 2024, 12, 6: 1223. doi:
    https://doi.org/10.3390/biomedicines12061223
  3. Clough E et al., “Mitochondrial Dynamics in SARS-COV2 Spike Protein Treated
    Human Microglia: Implications for Neuro-COVID,” Journal of Neuroimmune
    Pharmacology 2021, 16, 4: 770–784. doi: 10.1007/s11481-021-10015-6
  4. Huynh TV et al., “Spike Protein Impairs Mitochondrial Function in Human
    Cardiomyocytes: Mechanisms Underlying Cardiac Injury in COVID19,” Cells 2023, 12, 877. doi: https://doi.org/10.3390/cells12060877
  5. Kulkoviene G et al., “Di]erential Mitochondrial, Oxidative Stress and Inflammatory
    Responses to SARS-CoV-2 Spike Protein Receptor Binding Domain in Human Lung
    Microvascular, Coronary Artery Endothelial and Bronchial Epithelial Cells,” Int. J.
    Mol. Sci. 2024, 25, 6: 3188. doi: https://doi.org/10.3390/ijms25063188
  6. Mercado-Gómez M et al., “The spike of SARS-CoV-2 promotes metabolic rewiring in
    hepatocytes,” Commun. Biol. 2022, 5, 827. doi: 10.1038/s42003-022-03789-9
  7. Nguyen V, “The Spike Protein of SARS-CoV-2 Impairs Lipid Metabolism and
    Increases Susceptibility to Lipotoxicity: Implication for a Role of Nrf2,”
    Cells 2022, 11, 12: 1916. doi: https://doi.org/10.3390/cells11121916
  8. Yeung-Luk BH et al., “SARS-CoV-2 infection alters mitochondrial and cytoskeletal
    function in human respiratory epithelial cells mediated by expression of spike
    protein,” mBio 2023, 14, 4: e00820-23. doi: https://doi.org/10.1128/mbio.00820-23
  9. Zekri-Nechar K et al., “Spike Protein Subunits of SARS-CoV-2 Alter Mitochondrial
    Metabolism in Human Pulmonary Microvascular Endothelial Cells: Involvement of
    Factor Xa,” Dis. Markers 2022, 1118195. doi: https://doi.org/10.1155/2022/1118195

V. Myocarditis/cardiac/cardiomyopathy

  1. Abdi A et al., “Biomed Interaction of SARS-CoV-2 with cardiomyocytes: Insight into
    the underlying molecular mechanisms of cardiac injury and pharmacotherapy,”
    Pharmacother. 2022, 146: 112518. doi: 10.1016/j.biopha.2021.112518
  2. Avolio E et al., “The SARS-CoV-2 Spike Protein Disrupts Human Cardiac Pericytes
    Function through CD147 Receptor-Mediated Signalling: A Potential Non-infective
    Mechanism of COVID-19 Microvascular Disease,” Clin. Sci. 2021, 135, 24: 2667–
  3. doi: https://doi.org/10.1042/CS20210735
  4. Baumeier C et al., “Intramyocardial Inflammation after COVID-19 Vaccination: An
    Endomyocardial Biopsy-Proven Case Series,” Int. J. Mol. Sci. 2022, 23: 6940. doi:
    https://doi.org/10.3390/ijms23136940
  5. Bellavite P et al., “Immune response and molecular mechanisms of cardiovascular
    adverse e]ects of spike proteins from SARS-coV-2 and mRNA vaccines,”
    Biomedicines 2023, 11, 2: 451. doi: https://doi.org/10.3390/biomedicines11020451
  6. Boretti A. “PQQ Supplementation and SARS-CoV-2 Spike Protein-Induced Heart
    Inflammation,” Nat. Prod. Commun. 2022, 17, 1934578×221080929. doi:
    https://doi.org/10.1177/1934578X221080929
  7. Buoninfante A et al., “Myocarditis associated with COVID-19 vaccination,” npj
    Vaccines 2024, 122. doi: https://doi.org/10.1038/s41541-024-00893-1
  8. Cao X et al., “The SARS-CoV-2 spike protein induces long-term transcriptional
    perturbations of mitochondrial metabolic genes, causes cardiac fibrosis, and
    reduces myocardial contractile in obese mice,” Mol. Metab. 2023, 74, 101756. doi:
    https://doi.org/10.1016/j.molmet.2023.101756
  9. Clemens DJ et al., “SARS-CoV-2 spike protein-mediated cardiomyocyte fusion may
    contribute to increased arrhythmic risk in COVID-19,” PLoS One 2023, 18, 3:
    e0282151. doi: https://doi.org/10.1371/journal.pone.0282151
  10. De Sousa PMB et al., “Fatal Myocarditis following COVID-19 mRNA Immunization: A
    Case Report and Di]erential Diagnosis Review,” Vaccines 2024, 12, 2: 194.
    doi: https://doi.org/10.3390/vaccines12020194
  11. Forte E, “Circulating spike protein may contribute to myocarditis after COVID-19
    vaccination,” Nat. Cardiovasc. Res. 2023, 2: 100. doi: 10.1038/s44161-023-00222-0
  12. Huang X et al., “Sars-Cov-2 Spike Protein-Induced Damage of hiPSC-Derived
    Cardiomyocytes,” Adv. Biol. 2022, 6, 7: e2101327. doi: 10.1002/adbi.202101327
  13. Hulscher N et al., “Autopsy findings in cases of fatal COVID-19 vaccine-induced
    myocarditis,” ESC Heart Failure 2024. doi: https://doi.org/10.1002/ehf2.14680
  14. Huynh TV et al., “Spike Protein Impairs Mitochondrial Function in Human
    Cardiomyocytes: Mechanisms Underlying Cardiac Injury in COVID19,” Cells 2023, 12, 877. doi: https://doi.org/10.3390/cells12060877
  15. Huynh TV et al., “Spike Protein of SARS-CoV-2 Activates Cardiac Fibrogenesis
    through NLRP3 Inflammasomes and NF-κB Signaling,” Cells 2024, 13, 16: 1331.
    doi: https://doi.org/10.3390/cells13161331
  16. Imig JD, “SARS-CoV-2 spike protein causes cardiovascular disease independent of
    viral infection,” Clin Sci (Lond) 2022, 136, 6: 431–434. doi: 10.1042/CS20220028
  17. Kato Y et al., “TRPC3-Nox2 Protein Complex Formation Increases the Risk of SARSCoV-2 Spike Protein-Induced Cardiomyocyte Dysfunction through ACE2
    Upregulation,” Int. J. Mol. Sci. 2023, 24, 1: 102. doi: 10.3390/ijms24010102
  18. Kawano H et al., “Fulminant Myocarditis 24 Days after Coronavirus Disease
    Messenger Ribonucleic Acid Vaccination,” Intern. Med. 2022, 61, 15: 2319-2325.
    doi: https://doi.org/10.2169/internalmedicine.9800-22
  19. Li C. et al., “Intravenous Injection of Coronavirus Disease 2019 (COVID-19) MRNA
    Vaccine Can Induce Acute Myopericarditis in Mouse Model,” Clin. Infect.
    Dis. 2022, 74, 11: 1933-1950. doi: https://doi.org/10.1093/cid/ciab707
  20. Lin Z, “More than a key—the pathological roles of SARS-CoV-2 spike protein in
    COVID-19 related cardiac injury,” Sports Med Health Sci 2023, 6, 3: 209-220.
    doi: https://doi.org/10.1016/j.smhs.2023.03.004
  21. Rzymski P and Andrzej Fal, “To aspirate or not to aspirate? Considerations for the
    COVID-19 vaccines,” Pharmacol. Rep 2022, 74: 1223–1227. doi:
    https://doi.org/10.1007/s43440-022-00361-4
  22. Schreckenberg R et al., “Cardiac side e]ects of RNA-based SARS-CoV-2 vaccines:
    Hidden cardiotoxic e]ects of mRNA-1273 and BNT162b2 on ventricular myocyte
    function and structure,” Br. J. Pharmacol. 2024, 181, 3: 345-361. doi:
    https://doi.org/10.1111/bph.16262
  23. Yonker LM et al., “Circulating Spike Protein Detected in Post–COVID-19 mRNA
    Vaccine Myocarditis,” Circulation 2023, 147, 11. doi:
    10.1161/CIRCULATIONAHA.122.061025

W. NLRP3

  1. Albornoz EA et al., “SARS-CoV-2 drives NLRP3 inflammasome activation in human
    microglia through spike protein,” Mol. Psychiatr. 2023, 28: 2878–2893. doi:
    https://doi.org/10.1038/s41380-022-01831-0
  2. Arjsri P et al., “Hesperetin from root extract of Clerodendrum petasites S. Moore
    inhibits SARS-CoV-2 spike protein S1 subunit-induced Nlrp3 inflammasome in A549
    lung cells via modulation of the Akt/Mapk/Ap-1 pathway,” Int. J. Mol. Sci. 2022, 23,
    18: 10346. doi: https://doi.org/10.3390/ijms231810346
  3. Chittasupho C et al., “Inhibition of SARS-CoV-2-Induced NLRP3 InflammasomeMediated Lung Cell Inflammation by Triphala-Loaded Nanoparticle Targeting Spike
    Glycoprotein S1,” Pharmaceutics 2024, 16, 6: 751. doi:
    10.3390/pharmaceutics16060751
  4. Chittasupho C et al., “Targeting spike glycoprotein S1 mediated by NLRP3
    inflammasome machinery and the cytokine releases in A549 lung epithelial cells by
    nanocurcumin,” Pharmaceuticals (Basel) 2023, 16, 6: 862. doi:
    10.3390/ph16060862
  5. Corpetti C et al., “Cannabidiol inhibits SARS-Cov-2 spike (S) protein-induced
    cytotoxicity and inflammation through a PPARγ-dependent TLR4/NLRP3/Caspase-1
    signaling suppression in Caco-2 cell line,” Phytother. Res. 2021, 35, 12: 6893–
  6. doi: https://doi.org/10.1002/ptr.7302
  7. Del Re A et al., “Ultramicronized Palmitoylethanolamide Inhibits NLRP3
    Inflammasome Expression and Pro-Inflammatory Response Activated by SARSCoV-2 Spike Protein in Cultured Murine Alveolar Macrophages,”
    Metabolites 2021, 11, 9: 592. dsoi: https://doi.org/10.3390/metabo11090592
  8. Dissook S et al., “Luteolin-rich fraction from Perilla frutescens seed meal inhibits
    spike glycoprotein S1 of SARS-CoV-2-induced NLRP3 inflammasome lung cell
    inflammation via regulation of JAK1/STAT3 pathway: A potential anti-inflammatory
    compound against inflammation-induced long-COVID,” Front. Med. 2023, 9:
  9. doi: https://doi.org/10.3389/fmed.2022.1072056
  10. Huynh TV et al., “Spike Protein of SARS-CoV-2 Activates Cardiac Fibrogenesis
    through NLRP3 Inflammasomes and NF-κB Signaling,” Cells 2024, 13, 16: 1331.
    doi: https://doi.org/10.3390/cells13161331
  11. Jiang Q et al., “SARS-CoV-2 spike S1 protein induces microglial NLRP3-dependent
    neuroinflammation and cognitive impairment in mice,” Exp. Neurol. 2025, 383:
  12. doi: https://doi.org/10.1016/j.expneurol.2024.115020
  13. Kucia M et al. “An evidence that SARS-Cov-2/COVID-19 spike protein (SP) damages
    hematopoietic stem/progenitor cells in the mechanism of pyroptosis in Nlrp3
    inflammasome-dependent manner,” Leukemia 2021, 35: 3026-3029. doi:
    https://doi.org/10.1038/s41375-021-01332-z
  14. Ratajczak MZ et al., “SARS-CoV-2 Entry Receptor ACE2 Is Expressed on Very Small
    CD45- Precursors of Hematopoietic and Endothelial Cells and in Response to Virus
    Spike Protein Activates the Nlrp3 Inflammasome,” Stem Cell Rev Rep. 2021, 17, 1:
    266-277. doi: https://doi.org/10.1007/s12015-020-10010-z
  15. Semmarath W et al., “Cyanidin-3-O-glucoside and Peonidin-3-O-glucoside-Rich
    Fraction of Black Rice Germ and Bran Suppresses Inflammatory Responses from
    SARS-CoV-2 Spike Glycoprotein S1-Induction In Vitro in A549 Lung Cells and THP-1
    Macrophages via Inhibition of the NLRP3 Inflammasome Pathway,” Nutrients 2022,
    14, 13: 2738. doi: https://doi.org/10.3390/nu14132738
  16. Villacampa A et al., “SARS-CoV-2 S protein activates NLRP3 inflammasome and
    deregulates coagulation factors in endothelial and immune cells,” Cell Commun.
    Signal. 2024, 22, 38. doi: https://doi.org/10.1186/s12964-023-01397-6

X. Ocular, ophthalmic, conjunctival

  1. Golob-Schwarzl N et al., “SARS-CoV-2 spike protein functionally interacts with
    primary human conjunctival epithelial cells to induce a pro-inflammatory
    response,” Eye 2022, 36: 2353–5. doi: https://doi.org/10.1038/s41433-022-02066-7
  2. Grishma K and Das Sarma, “The Role of Coronavirus Spike Protein in Inducing Optic
    Neuritis in Mice: Parallels to the SARS-CoV-2 Virus,” J Neuroophthalmol 2024, 44, 3:
    319-329. doi: 10.1097/WNO.0000000000002234
  3. Zhu G et al., “SARS-CoV-2 spike protein-induced host inflammatory response
    signature in human corneal epithelial cells,” Mol. Med. Rep. 2021, 24: 584. doi:
    https://doi.org/10.3892/mmr.2021.12223

Y. Other cell signaling

  1. Caohuy H et al., “Inflammation in the COVID-19 airway is due to inhibition of CFTR
    signaling by the SARS-CoV-2 spike protein,” Sci. Rep. 2024, 14: 16895. doi:
    https://doi.org/10.1038/s41598-024-66473-4
  2. Choi JY et al., “SARS-CoV-2 spike S1 subunit protein-mediated increase of betasecretase 1 (BACE1) impairs human brain vessel cells,” Biochem. Biophys. Res.
    Commun. 2022, 625, 20: 66-71. doi: https://doi.org/10.1016/j.bbrc.2022.07.113
  3. Chrestia JF et al., “A Functional Interaction Between Y674-R685 Region of the SARSCoV-2 Spike Protein and the Human α7 Nicotinic Receptor,” Mol. Neurobiol. 2022,
    59: 676-690. doi: https://doi.org/10.1007/s12035-022-02947-8
  4. Corpetti C et al., “Cannabidiol inhibits SARS-Cov-2 spike (S) protein-induced
    cytotoxicity and inflammation through a PPARγ-dependent TLR4/NLRP3/Caspase-1
    signaling suppression in Caco-2 cell line,” Phytother. Res. 2021, 35, 12: 6893–
  5. doi: https://doi.org/10.1002/ptr.7302
  6. Gracie NP et al., “Cellular signalling by SARS-CoV-2 spike protein,” Microbiology
    Australia 2024, 45, 1: 13-17. doi: https://doi.org/10.1071/MA24005
  7. Hasan MZ et al., “SARS-CoV-2 infection induces adaptive NK cell responses by spike
    protein-mediated induction of HLA-E expression,” Emerg Microbes Infect. 2024, 13:
  8. doi: https://doi.org/10.1080/22221751.2024.2361019
  9. Li F et al., “SARS-CoV-2 Spike Promotes Inflammation and Apoptosis Through
    Autophagy by ROS-Suppressed PI3K/AKT/mTOR Signaling,” Biochim Biophys Acta
    BBA – Mol Basis Dis 2021, 1867: 166260. doi: 10.1016/j.bbadis.2021.166260
  10. Li K et al., “SARS-CoV-2 Spike protein promotes vWF secretion and thrombosis via
    endothelial cytoskeleton-associated protein 4 (CKAP4),” Signal Transduct Targ Ther.
    2022, 7, 332. doi: https://doi.org/10.1038/s41392-022-01183-9
  11. Moutal A et al., “SARS-CoV-2 Spike protein co-opts VEGF-A/Neuropilin-1 receptor
    signaling to induce analgesia,” Pain 2020, 162, 1: 243–252. doi:
    10.1097/j.pain.0000000000002097
  12. Munavilli GG et al., “COVID-19/SARS-CoV-2 virus spike protein-related delayed
    inflammatory reaction to hyaluronic acid dermal fillers: a challenging clinical
    conundrum in diagnosis and treatment,” Arch. Dermatol. Res. 2022, 314: 1-15. doi:
    https://doi.org/10.1007/s00403-021-02190-6
  13. O’Brien BCV et al., “SARS-CoV-2 spike ectodomain targets α7 nicotinic
    acetylcholine receptors,” J. Biol. Chem. 2023, 299, 5: 104707. doi:
    10.1016/j.jbc.2023.104707
  14. Oliveira ASF et al., “A potential interaction between the SARS-CoV-2 spike protein
    and nicotinic acetylcholine receptors,” Biophys. J. 2021, 120, 6: 983-993.
    doi: 10.1016/j.bpj.2021.01.037
  15. Prieto-Villalobos J et al., “SARS-CoV-2 spike protein S1 activates Cx43
    hemichannels and disturbs intracellular Ca2+ dynamics,” Biol Res. 2023, 56, 1: 56.
    doi: https://doi.org/10.1186/s40659-023-00468-9
  16. Rotoli BM et al., “Endothelial cell activation by SARS-CoV-2 spike S1 protein: A
    crosstalk between endothelium and innate immune cells,” Biomedicines 2021, 9, 9:
  17. doi: https://doi.org/10.3390/biomedicines9091220
  18. Singh N and Anuradha Bharara Singh, “S2 Subunit of SARS-nCoV-2 Interacts with
    Tumor Suppressor Protein p53 and BRCA: An in Silico Study,” Translational Oncology
    2020, 13, 10: 100814. doi: https://doi.org/10.1016/j.tranon.2020.100814
  19. Singh RD, “The spike protein of sars-cov-2 induces heme oxygenase-1:
    pathophysiologic implications,” Biochim Biophys Acta, Mol Basis Dis 2022, 1868, 3:
  20. doi: https://doi.org/10.1016/j.bbadis.2021.166322
  21. Solis O et al., “The SARS-CoV-2 spike protein binds and modulates estrogen
    receptors,” Sci. Adv. 2022, 8, 48: eadd4150. doi: 10.1126/sciadv.add4150
  22. Suzuki YJ et al., “SARS-CoV-2 spike protein-mediated cell signaling in lung vascular
    cells,” Vascul. Pharmacol. 2021, 137: 106823. doi: 10.1016/j.vph.2020.106823
  23. Suzuki YJ and SG Gychka, “SARS-CoV-2 Spike Protein Elicits Cell Signaling in Human
    Host Cells: Implications for Possible Consequences of COVID-19 Vaccines,”
    Vaccines 2021, 9, 1: 36. doi: https://doi.org/10.3390/vaccines9010036
  24. Tillman TS et al., “SARS-CoV-2 Spike Protein Downregulates Cell Surface
    alpha7nAChR through a Helical Motif in the Spike Neck,” ACS Chem.
    Neurosci. 2023, 14, 4: 689–698. doi: 10.1021/acschemneuro.2c00610

Z. PASC, post COVID, long COVID

  1. Bellucci M et al., “Post-SARS-CoV-2 infection and post-vaccine-related neurological
    complications share clinical features and the same positivity to anti-ACE2
    antibodies,” Front. Immunol. 2024, 15 (Sec. Multiple Sclerosis and
    Neuroimmunology). doi: https://doi.org/10.3389/fimmu.2024.1398028
  2. Craddock V et al., “Persistent circulation of soluble and extracellular vesicle-linked
    Spike protein in individuals with postacute sequelae of COVID-19,” J Med. Virol. 2023,
    95, 2: e28568. doi: https://doi.org/10.1002/jmv.28568
  3. De Melo BP et al., “SARS-CoV-2 Spike Protein and Long COVID—Part 1: Impact of
    Spike Protein in Pathophysiological Mechanisms of Long COVID Syndrome,”
    Viruses 2025, 17, 5: 617. doi: https://doi.org/10.3390/v17050617
  4. Dissook S et al., “Luteolin-rich fraction from Perilla frutescens seed meal inhibits
    spike glycoprotein S1 of SARS-CoV-2-induced NLRP3 inflammasome lung cell
    inflammation via regulation of JAK1/STAT3 pathway: A potential anti-inflammatory
    compound against inflammation-induced long-COVID,” Front. Med. 2023, 9:
  5. doi: https://doi.org/10.3389/fmed.2022.1072056
  6. Frank MG et al., “Exploring the immunogenic properties of SARS-CoV-2 structural
    proteins: PAMP:TLR signaling in the mediation of the neuroinflammatory and
    neurologic sequelae of COVID-19,” Brain Behav Immun 2023, 111. doi:
    https://doi.org/10.1016/j.bbi.2023.04.009
  7. Frank MG et al., “SARS-CoV-2 S1 subunit produces a protracted priming of the
    neuroinflammatory, physiological, and behavioral responses to a remote immune
    challenge: A role for corticosteroids,” Brain Behav. Immun. 2024, 121: 87-103. doi:
    https://doi.org/10.1016/j.bbi.2024.07.034
  8. Fraser ME at al., “SARS-CoV-2 Spike Protein and Viral RNA Persist in the Lung of
    Patients With Post-COVID Lung Disease (abstract),” Am J Respir Crit Care Med 2024,
    209: A4193. doi: 10.1164/ajrccm-conference.2024.209.1_MeetingAbstracts.A4193
  9. Goh D et al., “Case report: Persistence of residual antigen and RNA of the SARS-CoV2 virus in tissues of two patients with long COVID,” Front. Immunol. 2022, 13 (Sec.
    Viral Immunology). doi: https://doi.org/10.3389/fimmu.2022.939989
  10. Halma MTJ et al., “Exploring autophagy in treating SARS-CoV-2 spike protein-related
    pathology,” Endocrinol Metab (EnM) 2024, 14: 100163. doi:
    https://doi.org/10.1016/j.endmts.2024.100163
  11. Halma MTJ et al., “Strategies for the Management of Spike Protein-Related
    Pathology,” Microorganisms 2023, 11, 5: 1308. doi:
    10.3390/microorganisms11051308
  12. Hano S et al., “A case of persistent, confluent maculopapular erythema following a
    COVID-19 mRNA vaccination is possibly associated with the intralesional spike
    protein expressed by vascular endothelial cells and eccrine glands in the deep
    dermis,” J Dermatol 2023, 50, 9: 1208-1212. doi: 10.1111/1346-8138.16816
  13. Kempuraj D et al., “Long COVID elevated MMP-9 and release from microglia by SARSCoV-2 Spike protein,” Transl. Neurosci. 2024, 15: 20220352. doi:
    https://doi.org/10.1515/tnsci-2022-0352
  14. Patterson BK et al., “Persistence of SARS CoV-2 S1 Protein in CD16+ Monocytes in
    Post-Acute Sequelae of COVID-19 (PASC) up to 15 Months Post-Infection,” Front.
    Immunol. 12 (Sec. Viral Immunology). doi: 10.3389/fimmu.2021.746021
  15. Peluso MJ et al., “Plasma-based antigen persistence in the post-acute phase of
    COVID-19,” Lancet 2024, 24, 6: E345-E347. doi: 10.1016/S1473-3099(24)00211-1
  16. Rong Z et al., “Persistence of spike protein at the skull-meninges-brain axis may
    contribute to the neurological sequelae of COVID-19,” Cell Host Microbe 2024, 26:
    S1931-3128(24)00438-4. doi: 10.1016/j.chom.2024.11.007
  17. Scholkmann F and CA May, “COVID-19, post-acute COVID-19 syndrome (PACS, ‘long
    COVID’) and post-COVID-19 vaccination syndrome (PCVS, ‘post-COVIDvacsyndrome’): Similarities and di]erences,” Pathol Res Pract. 2023, 246: 154497. doi:
    https://doi.org/10.1016/j.prp.2023.154497
  18. Schultheiss C et al., “Liquid biomarkers of macrophage dysregulation and circulating
    spike protein illustrate the biological heterogeneity in patients with post-acute
    sequelae of COVID-19,” J Med Virol 2023, 95, 1: e28364. doi: 10.1002/jmv.28364
  19. Swank Z, et al. “Persistent Circulating Severe Acute Respiratory Syndrome
    Coronavirus 2 Spike Is Associated With Post-acute Coronavirus Disease 2019
    Sequelae,” Clin. Infect. Dis. 2023, 76, 3: e487–e490. doi: 10.1093/cid/ciac722
  20. Theoharides TC, “Could SARS-CoV-2 Spike Protein Be Responsible for Long-COVID
    Syndrome?” Mol. Neurobiol. 2022, 59, 3: 1850–1861. doi: 10.1007/s12035-021-
    02696-0
  21. Visvabharathy L et al., “Case report: Treatment of long COVID with a SARS-CoV-2
    antiviral and IL-6 blockade in a patient with rheumatoid arthritis and SARS-CoV-2
    antigen persistence,” Front. Med. 2022, 9 (Sec. Infectious Diseases – Surveillance).
    doi: https://doi.org/10.3389/fmed.2022.1003103
  22. Yamamoto M et al., “Persistent varicella zoster virus infection following mRNA
    COVID-19 vaccination was associated with the presence of encoded spike protein in
    the lesion,” J. Cutan Immunol. Allergy. 2022:1–6. doi: 10.1002/cia2.12278
  23. Zollner A et al., “Postacute COVID-19 is Characterized by Gut Viral Antigen
    Persistence in Inflammatory Bowel Diseases,” Gastroenterology 2022, 163, 2: 495-
    506.e8. doi: https://doi.org/10.1053/j.gastro.2022.04.037

AA. Pregnancy

  1. Erdogan MA, “Prenatal SARS-CoV-2 Spike Protein Exposure Induces Autism-Like
    Neurobehavioral Changes in Male Neonatal Rats,” J Neuroimmune Pharmacol.
    2023, 18, 4: 573-591. doi: 10.1007/s11481-023-10089-4
  2. Guo X et al., “Regulation of proinflammatory molecules and tissue factor by SARSCoV-2 spike protein in human placental cells: implications for SARS-CoV-2
    pathogenesis in pregnant women,” Front. Immunol. 2022, 13: 876555–876555. doi:
    https://doi.org/10.3389/fimmu.2022.876555
  3. Kammala AK et al., “In vitro mRNA-S maternal vaccination induced altered immune
    regulation at the maternal-fetal interface,” Am. J. Reprod. Immunol. 2024, 91, 5:
    e13861. doi: https://doi.org/10.1111/aji.13861
  4. Karrow NA et al., “Maternal COVID-19 Vaccination and Its Potential Impact on Fetal
    and Neonatal Development,” Vaccines 2021, 9: 1351. doi:
    10.3390/vaccines9111351
  5. Parcial ALN et al., “SARS-CoV-2 Is Persistent in Placenta and Causes Macroscopic,
    Histopathological, and Ultrastructural Changes,” Viruses 2022, 14, 9: 1885.
    doi: https://doi.org/10.3390/v14091885
  6. Wu H et al., “Molecular evidence suggesting the persistence of residual SARS-CoV-2
    and immune responses in the placentas of pregnant patients recovered from
    COVID-19,” Cell Prolif. 2021, 54, 9: e13091. doi: https://doi.org/10.1111/cpr.13091
  7. Zurlow M et al., “The anti-SARS-CoV-2 BNT162b2 vaccine suppresses mithramycininduced erythroid di]erentiation and expression of embryo-fetal globin genes in
    human erythroleukemia K562 cells.” Exp Cell Res 2023, 433, 2: 113853. doi:
    https://doi.org/10.1016/j.yexcr.2023.113853

BB. Pulmonary, respiratory

  1. Bhargavan B and GD Kanmogne, “SARS-CoV-2 spike proteins and cell–cell
    communication inhibits TFPI and induces thrombogenic factors in human lung
    microvascular endothelial cells and neutrophils: implications for COVID-19
    coagulopathy pathogenesis,” Int. J. Mol. Sci. 2022, 23, 18: 10436. doi:
    https://doi.org/10.3390/ijms231810436
  2. Biancatelli RMLC et al., “The SARS-CoV-2 spike protein subunit S1 induces COVID19-like acute lung injury in Kappa18-hACE2 transgenic mice and barrier dysfunction
    in human endothelial cells,” Am. J. Physiol. Lung Cell. Mol. Physiol. 2021, 321: L477–
    L484. doi: https://doi.org/10.1152/ajplung.00223.2021
  3. Cao JB et al., “Mast cell degranulation-triggered by SARS-CoV-2 induces trachealbronchial epithelial inflammation and injury,” Virol. Sin. 2024, 39, 2: 309-318. doi:
    https://doi.org/10.1016/j.virs.2024.03.001
  4. Cao X et al., “Spike protein of SARS-CoV-2 activates macrophages and contributes
    to induction of acute lung inflammation in male mice,” FASEB J. 2021, 35, e21801.
    doi: https://doi.org/10.1096/fj.202002742RR
  5. Caohuy H et al., “Inflammation in the COVID-19 airway is due to inhibition of CFTR
    signaling by the SARS-CoV-2 spike protein,” Sci. Rep. 2024, 14: 16895. doi:
    https://doi.org/10.1038/s41598-024-66473-4
  6. Chittasupho C et al., “Inhibition of SARS-CoV-2-Induced NLRP3 InflammasomeMediated Lung Cell Inflammation by Triphala-Loaded Nanoparticle Targeting Spike
    Glycoprotein S1,” Pharmaceutics 2024, 16, 6: 751. doi:
    10.3390/pharmaceutics16060751
  7. Chittasupho C et al., “Targeting spike glycoprotein S1 mediated by NLRP3
    inflammasome machinery and the cytokine releases in A549 lung epithelial cells by
    nanocurcumin,” Pharmaceuticals (Basel) 2023, 16, 6: 862. doi:
    10.3390/ph16060862
  8. DeVries A et al., “SARS-CoV-2 Spike Protein is Su]icient to Induce Enhanced Proinflammatory Transcriptional Responses in Nasal Epithelial Cells from Atopic
    Asthmatics,” J Allergy Clin Immunol 2025, 155, 2: AB85. doi:
    10.1016/j.jaci.2024.12.271
  9. Del Re A et al., “Intranasal delivery of PEA-producing Lactobacillus paracasei
    F19 alleviates SARS-CoV-2 spike protein-induced lung injury in mice,” Transl. Med.
    Commun. 2024, 9, 9. doi: https://doi.org/10.1186/s41231-024-00167-x
  10. Forsyth CB et al., “The SARS-CoV-2 S1 spike protein promotes MAPK and NF-kB
    activation in human lung cells and inflammatory cytokine production in human lung
    and intestinal epithelial cells,” Microorganisms 2022, 10, 10: 1996.
    doi: https://doi.org/10.3390/microorganisms10101996
  11. Fraser ME at al., “SARS-CoV-2 Spike Protein and Viral RNA Persist in the Lung of
    Patients With Post-COVID Lung Disease (abstract),” Am J Respir Crit Care Med 2024,
    209: A4193. doi: 10.1164/ajrccm-conference.2024.209.1_MeetingAbstracts.A4193
  12. Greenberger JS et al., “SARS-CoV-2 Spike Protein Induces Oxidative Stress and
    Senescence in Mouse and Human Lung,” In Vivo 2024, 38, 4: 1546-1556. doi:
    https://doi.org/10.21873/invivo.13605
  13. Jana S et al., “Cell-free hemoglobin does not attenuate the e]ects of SARS-CoV-2
    spike protein S1 subunit in pulmonary endothelial cells,” Int. J. Mol. Sci. 2021, 22,
    16: 9041. doi: https://doi.org/10.3390/ijms22169041
  14. Kulkoviene G et al., “Di]erential Mitochondrial, Oxidative Stress and Inflammatory
    Responses to SARS-CoV-2 Spike Protein Receptor Binding Domain in Human Lung
    Microvascular, Coronary Artery Endothelial and Bronchial Epithelial Cells,” Int. J.
    Mol. Sci. 2024, 25, 6: 3188. doi: https://doi.org/10.3390/ijms25063188
  15. Liang S et al., “SARS-CoV-2 spike protein induces IL-18-mediated cardiopulmonary
    inflammation via reduced mitophagy,” Signal Transduct Target Ther 2023, 8, 103. doi:
    https://doi.org/10.1038/s41392-023-01368-w
  16. Liu T et al., “RS-5645 attenuates inflammatory cytokine storm induced by SARSCoV-2 spike protein and LPS by modulating pulmonary microbiota,” Int J Biol Sci.
    2021, 17, 13: 3305–3319. doi: 10.7150/ijbs.63329
  17. Liu Y et al., “The recombinant spike S1 protein induces injury and inflammation in
    co-cultures of human alveolar epithelial cells and macrophages,” PLoS ONE 2025,
    20, 2: e0318881. doi: https://doi.org/10.1371/journal.pone.0318881
  18. Palestra F et al. “SARS-CoV-2 Spike Protein Activates Human Lung
    Macrophages,” Int. J. Mol. Sci. 2023, 24, 3: 3036. doi: 10.3390/ijms24033036
  19. Park C et al., “Murine alveolar Macrophages Rapidly Accumulate intranasally
    Administered SARS-CoV-2 Spike Protein leading to neutrophil Recruitment and
    Damage,” Elife 2024, 12: RP86764. doi: https://doi.org/10.7554/eLife.86764.3
  20. Puthia MTL et al., “Experimental model of pulmonary inflammation induced by
    SARS-CoV-2 spike protein and endotoxin,” ACS Pharmacol Transl Sci. 2022, 5,
    3: 141–8. doi: https://doi.org/10.1021/acsptsci.1c00219
  21. Rahman M et al., “Di]erential E]ect of SARS-CoV-2 Spike Glycoprotein 1 on Human
    Bronchial and Alveolar Lung Mucosa Models: Implications for Pathogenicity,”
    Viruses 2021, 13, 12: 2537. doi: https://doi.org/10.3390/v13122537
  22. Roy A et al., “Ultradiluted Eupatorium perfoliatum Prevents and Alleviates SARSCoV-2 Spike Protein-Induced Lung Pathogenesis by Regulating Inflammatory
    Response and Apoptosis,” Diseases 2025, 13, 2: 36.
    doi: 10.3390/diseases13020036
  23. Ruben ML et al., “The SARS-CoV-2 spike protein subunit S1 induces COVID-19-like
    acute lung injury in Κ18-hACE2 transgenic mice and barrier dysfunction in human
    endothelial cells,” Am J Physiol Lung Cell Mol Physiol. 2021, 321, 2: L477-L484.
    doi: https://doi.org/10.1152/ajplung.00223.2021
  24. Segura-Villalobos D et al., “Jacareubin inhibits TLR4-induced lung inflammatory
    response caused by the RBD domain of SARS-CoV-2 Spike protein,” Pharmacol.
    Rep. 2022, 74: 1315–1325. doi: https://doi.org/10.1007/s43440-022-00398-5
  25. Semmarath W et al., “Cyanidin-3-O-glucoside and Peonidin-3-O-glucoside-Rich
    Fraction of Black Rice Germ and Bran Suppresses Inflammatory Responses from
    SARS-CoV-2 Spike Glycoprotein S1-Induction In Vitro in A549 Lung Cells and THP-1
    Macrophages via Inhibition of the NLRP3 Inflammasome Pathway,” Nutrients 2022,
    14, 13: 2738. doi: https://doi.org/10.3390/nu14132738
  26. Sirsendu J et al., “Cell-Free Hemoglobin Does Not Attenuate the E]ects of SARSCoV-2 Spike Protein S1 Subunit in Pulmonary Endothelial Cells,” Int. J. Mol. Sci.
    2021, 22, 16: 9041. doi: https://doi.org/10.3390/ijms22169041
  27. Solopov et al., “Alcohol increases lung angiotensin-converting enzyme 2 expression
    and exacerbates severe acute respiratory syndrome coronavirus 2 spike protein
    subunit 1-induced acute lung injury in K18-hACE2 transgenic mice,” Am J Pathol
    2022, 192, 7: 990-1000. doi: 10.1016/j.ajpath.2022.03.012
  28. Sui Y et al., “SARS-CoV-2 Spike Protein Suppresses ACE2 and Type I Interferon
    Expression in Primary Cells From Macaque Lung Bronchoalveolar Lavage,” Front.
    Immunol. 2021, 12. doi: https://doi.org/10.3389/fimmu.2021.658428
  29. Sung PS et al., “CLEC5A and TLR2 Are Critical in SARS-CoV-2-Induced NET
    Formation and Lung Inflammation,” J. Biomed. Sci. 2022, 29, 52. doi:
    https://doi.org/10.1186/s12929-022-00832-z
  30. Suzuki YJ et al., “SARS-CoV-2 spike protein-mediated cell signaling in lung vascular
    cells,” Vascul. Pharmacol. 2021, 137: 106823. doi: 10.1016/j.vph.2020.106823
  31. Yang K et al., “SARS-CoV-2 spike protein receptor-binding domain perturbates
    intracellular calcium homeostasis and impairs pulmonary vascular endothelial
    cells,” Signal Transduct Target Ther. 2023, 8, 276. doi: 10.1038/s41392-023-01556-8
  32. Yeung-Luk BH et al., “SARS-CoV-2 infection alters mitochondrial and cytoskeletal
    function in human respiratory epithelial cells mediated by expression of spike
    protein,” mBio 2023, 14, 4: e00820-23. doi: https://doi.org/10.1128/mbio.00820-23
  33. Zekri-Nechar K et al., “Spike Protein Subunits of SARS-CoV-2 Alter Mitochondrial
    Metabolism in Human Pulmonary Microvascular Endothelial Cells: Involvement of
    Factor Xa,” Dis. Markers 2022, 1118195. doi: https://doi.org/10.1155/2022/1118195

CC. Renin-Angiotensin-Aldosterone System

  1. Burnett FN et al., “SARS-CoV-2 Spike Protein Intensifies Cerebrovascular
    Complications in Diabetic hACE2 Mice through RAAS and TLR Signaling Activation,”
    Int. J. Mol. Sci. 2023, 24, 22: 16394. doi: https://doi.org/10.3390/ijms242216394
  2. Lehmann KJ, “SARS-CoV-2-Spike Interactions with the Renin-AngiotensinAldosterone System – Consequences of Adverse Reactions of Vaccination,” J Biol
    Today’s World 2023, 12/4: 001-013. doi: https://doi.org/10.31219/osf.io/27g5h
  3. Matsuzawa Y et al., “Impact of Renin–Angiotensin–Aldosterone System Inhibitors on
    COVID-19,” Hypertens. Res. 2022, 45, 7: 1147–1153. doi: 10.1038/s41440-022-
    00922-3

DD. Senescence/aging

  1. Duarte C, “Age-dependent e]ects of the recombinant spike protein/SARS-CoV-2 on
    the M-CSF- and IL-34-di]erentiated macrophages in vitro,” Biochem. Biophys. Res.
    Commun. 2021, 546: 97–102. doi: https://doi.org/10.1016/j.bbrc.2021.01.104
  2. Greenberger JS et al., “SARS-CoV-2 Spike Protein Induces Oxidative Stress and
    Senescence in Mouse and Human Lung,” In Vivo 2024, 38, 4: 1546-1556. doi:
    https://doi.org/10.21873/invivo.13605
  3. Meyer K et al., “SARS-CoV-2 Spike Protein Induces Paracrine Senescence and
    Leukocyte Adhesion in Endothelial Cells,” J. Virol. 2021, 95, e0079421. doi:
    https://doi.org/10.1128/jvi.00794-21

EE. Stem cells

  1. Balzanelli MG et al., “The Role of SARS-CoV-2 Spike Protein in Long-term Damage of
    Tissues and Organs, the Underestimated Role of Retrotransposons and Stem Cells,
    a Working Hypothesis,” Endocr Metab Immune Disord Drug Targets 2025, 25, 2: 85-
  2. doi: 10.2174/0118715303283480240227113401
  3. Kucia M et al. “An evidence that SARS-Cov-2/COVID-19 spike protein (SP) damages
    hematopoietic stem/progenitor cells in the mechanism of pyroptosis in Nlrp3
    inflammasome-dependent manner,” Leukemia 2021, 35: 3026-3029. doi:
    https://doi.org/10.1038/s41375-021-01332-z
  4. Ropa J et al., “Human Hematopoietic Stem, Progenitor, and Immune Cells Respond
    Ex Vivo to SARS-CoV-2 Spike Protein,” Stem Cell Rev Rep. 2021, 17, 1: 253-265. doi:
    https://doi.org/10.1007/s12015-020-10056-z

FF. Syncytia/cell fusion

  1. Braga L et al., “Drugs that inhibit TMEM16 proteins block SARS-CoV-2 spike-induced
    syncytia,” Nature 2021, 594: 88–93. doi: 10.1038/s41586-021-03491-6
  2. Cattin-Ortolá J et al., “Sequences in the cytoplasmic tail of SARS-CoV-2 Spike
    facilitate expression at the cell surface and syncytia formation,” Nat Commun 2021,
    12, 1: 5333. doi: https://doi.org/10.1038/s41467-021-25589-1
  3. Clemens DJ et al., “SARS-CoV-2 spike protein-mediated cardiomyocyte fusion may
    contribute to increased arrhythmic risk in COVID-19,” PLoS One 2023, 18, 3:
    e0282151. doi: https://doi.org/10.1371/journal.pone.0282151
  4. Lazebnik Y, “Cell fusion as a link between the SARS-CoV-2 spike protein, COVID-19
    complications, and vaccine side e]ects,” Oncotarget 2021, 12, 25: 2476-2488. doi:
    https://doi.org/10.18632/oncotarget.28088
  5. Liu X et al., “SARS-CoV-2 spike protein-induced cell fusion activates the cGASSTING pathway and the interferon response,” Sci Signal. 2022, 15, 729: eabg8744.
    doi: 10.1126/scisignal.abg8744
  6. Martinez-Marmol R et al., “SARS-CoV-2 infection and viral fusogens cause neuronal
    and glial fusion that compromises neuronal activity,” Sci. Adv. 2023, 9, 23. doi:
    10.1126/sciadv.adg2248
  7. Rajah MM et al., “SARS-CoV-2 Alpha, Beta, and Delta variants display enhanced
    spike-mediated syncytia formation,” EMBO J. 2021, 40: e108944. doi:
    https://doi.org/10.15252/embj.2021108944
  8. Shirato K and Takako Kizaki, “SARS-CoV-2 Spike Protein S1 Subunit Induces Proinflammatory Responses via Toll-Like Receptor 4 Signaling in Murine and Human
    Macrophages,” Heliyon 2021, 7, 2: e06187. doi: 10.1016/j.heliyon.2021.e06187
  9. Theuerkauf SA et al., “Quantitative assays reveal cell fusion at minimal levels of
    SARS-CoV-2 spike protein and fusion from without,” iScience 2021, 24, 3: 102170.
    doi: https://doi.org/10.1016/j.isci.2021.102170
  10. Zhang Z et al., “SARS-CoV-2 spike protein dictates syncytium-mediated lymphocyte
    elimination,” Cell Death Diber. 2021, 28: 2765–2777. doi: 10.1038/s41418-021-
    00782-3

GG. Therapeutics

  1. Almehdi AM et al., “SARS-CoV-2 Spike Protein: Pathogenesis, Vaccines, and
    Potential Therapies,” Infection 2021, 49, 5: 855–876. doi: 10.1007/s15010-021-
    01677-8
  2. Boretti A, “PQQ Supplementation and SARS-CoV-2 Spike Protein-Induced Heart
    Inflammation,” Nat. Prod. Commun. 2022, 17, 1934578×221080929. doi:
    https://doi.org/10.1177/1934578X221080929
  3. Boschi C et al., “SARS-CoV-2 Spike Protein Induces Hemagglutination: Implications
    for COVID-19 Morbidities and Therapeutics and for Vaccine Adverse E]ects,” Int. J.
    Biol. Macromol. 2022, 23, 24: 15480. doi: https://doi.org/10.3390/ijms232415480
  4. Braga L et al., “Drugs that inhibit TMEM16 proteins block SARS-CoV-2 spike-induced
    syncytia,” Nature 2021, 594: 88–93. doi: 10.1038/s41586-021-03491-6
  5. Chang MH et al., “SARS-CoV-2 Spike Protein 1 Causes Aggregation of α-Synuclein
    via Microglia-Induced Inflammation and Production of Mitochondrial ROS: Potential
    Therapeutic Applications of Metformin,” Biomedicines 2024, 12, 6: 1223. doi:
    https://doi.org/10.3390/biomedicines12061223
  6. Chittasupho C et al., “Inhibition of SARS-CoV-2-Induced NLRP3 InflammasomeMediated Lung Cell Inflammation by Triphala-Loaded Nanoparticle Targeting Spike
    Glycoprotein S1,” Pharmaceutics 2024, 16, 6: 751. doi:
    10.3390/pharmaceutics16060751
  7. Chittasupho C et al., “Targeting spike glycoprotein S1 mediated by NLRP3
    inflammasome machinery and the cytokine releases in A549 lung epithelial cells by
    nanocurcumin,” Pharmaceuticals (Basel) 2023, 16, 6: 862. doi:
    10.3390/ph16060862
  8. Corpetti C et al., “Cannabidiol inhibits SARS-Cov-2 spike (S) protein-induced
    cytotoxicity and inflammation through a PPARγ-dependent TLR4/NLRP3/Caspase-1
    signaling suppression in Caco-2 cell line,” Phytother. Res. 2021, 35, 12: 6893-
  9. doi: https://doi.org/10.1002/ptr.7302
  10. Cory TJ et al., “Metformin Suppresses Monocyte Immunometabolic Activation by
    SARS-CoV-2 Spike Protein Subunit 1,” Front. Immunol. 2021, 12 (Sec. Cytokines and
    Soluble Mediators in Immunity): 733921. doi: 10.3389/fimmu.2021.733921
  11. Del Re A et al., “Intranasal delivery of PEA-producing Lactobacillus paracasei
    F19 alleviates SARS-CoV-2 spike protein-induced lung injury in mice,” Transl. Med.
    Commun. 2024, 9, 9. doi: https://doi.org/10.1186/s41231-024-00167-x
  12. Del Re A et al., “Ultramicronized Palmitoylethanolamide Inhibits NLRP3
    Inflammasome Expression and Pro-Inflammatory Response Activated by SARSCoV-2 Spike Protein in Cultured Murine Alveolar Macrophages,” Metabolites 2021,
    11, 9: 592. doi: https://doi.org/10.3390/metabo11090592
  13. Dhandapani S et al., “Lipid-encapsulated gold nanoparticles: an advanced strategy
    for attenuating the inflammatory response in SARS-CoV-2 infection,” J.
    Nanobiotechnology 2025, 23, 15. doi: https://doi.org/10.1186/s12951-024-03064-5
  14. Ferrer MD et al., “Nitrite Attenuates the In Vitro Inflammatory Response of Immune
    Cells to the SARS-CoV-2 S Protein without Interfering in the Antioxidant Enzyme
    Activation,” Int. J. Mol. Sci. 2024, 25, 5: 3001. https://doi.org/10.3390/ijms25053001
  15. Frank MG et al., “SARS-CoV-2 S1 subunit produces a protracted priming of the
    neuroinflammatory, physiological, and behavioral responses to a remote immune
    challenge: A role for corticosteroids,” Brain Behav. Immun. 2024, 121: 87-103. doi:
    https://doi.org/10.1016/j.bbi.2024.07.034
  16. Frühbeck G et al., “FNDC4 and FNDC5 reduce SARS-CoV-2 entry points and spike
    glycoprotein S1-induced pyroptosis, apoptosis, and necroptosis in human
    adipocytes,” Cell Mol Immunol. 2021, 18, 10: 2457–9. doi: 10.1038/s41423-021-
    00762-0
  17. Gasparello J et al., “Aged Garlic Extract (AGE) and Its Constituent S-Allyl-Cysteine
    (SAC) Inhibit the Expression of Pro-Inflammatory Genes Induced in Bronchial
    Epithelial IB3-1 Cells by Exposure to the SARS-CoV-2 Spike Protein and the
    BNT162b2 Vaccine,” Molecules 2024, 29, 24: 5938. doi:
    10.3390/molecules29245938
  18. Gasparello J et al., “In vitro induction of interleukin-8 by SARS-CoV-2 Spike protein is
    inhibited in bronchial epithelial IB3-1 cells by a miR-93-5p agomiR,” Int.
    Immunopharmacol. 2021, 101: 108201. doi: 10.1016/j.intimp.2021.108201
  19. Gasparello J et al., “Sulforaphane inhibits the expression of interleukin-6 and
    interleukin-8 induced in bronchial epithelial IB3-1 cells by exposure to the SARSCoV-2 Spike protein,” Phytomedicine 2021, 87: 153583. doi:
    https://doi.org/10.1016/j.phymed.2021.153583
  20. Halma MTJ et al., “Exploring autophagy in treating SARS-CoV-2 spike protein-related
    pathology,” Endocrinol Metab (EnM) 2024, 14: 100163. doi:
    10.1016/j.endmts.2024.100163
  21. Halma MTJ et al., “Strategies for the Management of Spike Protein-Related
    Pathology,” Microorganisms 2023, 11, 5: 1308. doi:
    10.3390/microorganisms11051308
  22. Jana S et al., “Cell-free hemoglobin does not attenuate the e]ects of SARS-CoV-2
    spike protein S1 subunit in pulmonary endothelial cells,” Int. J. Mol. Sci. 2021, 22,
    16: 9041. doi: https://doi.org/10.3390/ijms22169041
  23. Jugler C et al., “SARS-CoV-2 Spike Protein-Induced Interleukin 6 Signaling Is Blocked
    by a Plant-Produced Anti-Interleukin 6 Receptor Monoclonal Antibody,”
    Vaccines 2021, 9, 11: 1365. doi: https://doi.org/10.3390/vaccines9111365
  24. Ken W et al., “Low dose radiation therapy attenuates ACE2 depression and
    inflammatory cytokines induction by COVID-19 viral spike protein in human
    bronchial epithelial cells,” Int J Radiat Biol. 2022, 98, 10:1532-1541. doi:
    https://doi.org/10.1080/09553002.2022.2055806
  25. Kumar N et al., “SARS-CoV-2 spike protein S1-mediated endothelial injury and proinflammatory state Is amplified by dihydrotestosterone and prevented by
    mineralocorticoid antagonism,” Viruses 2021, 13, 11: 2209. doi: 10.3390/v13112209
  26. Liu T et al., “RS-5645 attenuates inflammatory cytokine storm induced by SARSCoV-2 spike protein and LPS by modulating pulmonary microbiota,” Int J Biol Sci.
    2021, 17, 13: 3305–3319. doi: 10.7150/ijbs.63329
  27. Loh D, “The potential of melatonin in the prevention and attenuation of oxidative
    hemolysis and myocardial injury from cd147 SARS-CoV-2 spike protein receptor
    binding,” Melatonin Research 2020, 3, 3: 380-416. doi: 10.32794/mr11250069
  28. Loh JT et al., “Dok3 restrains neutrophil production of calprotectin during TLR4
    sensing of SARS-CoV-2 spike protein,” Front. Immunol. 2022, 13 (Sec. Molecular
    Innate Immunity). doi: https://doi.org/10.3389/fimmu.2022.996637
  29. Marrone L et al., “Tirofiban prevents the e]ects of SARS-CoV-2 spike protein on
    macrophage activation and endothelial cell death,” Heliyon 2024, 10, 15: e35341.
    doi: 10.1016/j.heliyon.2024.e35341
  30. Norris B et al., “Evaluation of Glutathione in Spike Protein of SARS-CoV-2 Induced
    Immunothrombosis and Cytokine Dysregulation,” Antioxidants 2024, 13, 3: 271.
    doi: https://doi.org/10.3390/antiox13030271
  31. Oka N et al., “SARS-CoV-2 S1 protein causes brain inflammation by reducing
    intracerebral acetylcholine production,” iScience 2023, 26, 6: 106954. doi:
    10.1016/j.isci.2023.106954
  32. Olajide OA et al., “Induction of Exaggerated Cytokine Production in Human
    Peripheral Blood Mononuclear Cells by a Recombinant SARS-CoV-2 Spike
    Glycoprotein S1 and Its Inhibition by Dexamethasone,” Inflammation 2021, 44:
    1865–1877. doi: https://doi.org/10.1007/s10753-021-01464-5
  33. Petrosino S and N Matende, “Elimination/Neutralization of COVID-19 VaccineProduced Spike Protein: Scoping Review,” Mathews Journal of Nutrition & Dietetics
    2024, 7, 2. doi: https://doi.org/10.30654/MJND.10034
  34. Roy A et al., “Ultradiluted Eupatorium perfoliatum Prevents and Alleviates SARSCoV-2 Spike Protein-Induced Lung Pathogenesis by Regulating Inflammatory
    Response and Apoptosis,” Diseases 2025, 13, 2: 36.
    doi: 10.3390/diseases13020036
  35. Satta S et al., “An engineered nano-liposome-human ACE2 decoy neutralizes SARSCoV-2 Spike protein-induced inflammation in both murine and human
    macrophages,” Theranostics 2022, 12, 6: 2639–2657. doi: 10.7150/thno.66831
  36. Segura-Villalobos D et al., “Jacareubin inhibits TLR4-induced lung inflammatory
    response caused by the RBD domain of SARS-CoV-2 Spike protein,” Pharmacol.
    Rep. 2022, 74: 1315–1325. doi: https://doi.org/10.1007/s43440-022-00398-5
  37. Semmarath W et al., “Cyanidin-3-O-glucoside and Peonidin-3-O-glucoside-Rich
    Fraction of Black Rice Germ and Bran Suppresses Inflammatory Responses from
    SARS-CoV-2 Spike Glycoprotein S1-Induction In Vitro in A549 Lung Cells and THP-1
    Macrophages via Inhibition of the NLRP3 Inflammasome Pathway,” Nutrients 2022,
    14, 13: 2738. doi: https://doi.org/10.3390/nu14132738
  38. Solopov PA et al., “KVX-053, a protein tyrosine phosphatase 4A3 inhibitor,
    ameliorates SARS-CoV-2 spike protein subunit 1–induced acute lung injury in mice,”
    J. Pharmacol. Exp. Ther. 2025, 392, 3: 100022. doi: 10.1124/jpet.124.002154
  39. Suprewicz L et al., “Recombinant human plasma gelsolin reverses increased
    permeability of the blood-brain barrier induced by the spike protein of the SARSCoV-2 virus,” J Neuroinflamm. 2022, 19, 1: 282. doi: 10.1186/s12974-022-02642-4
  40. Tsilioni I et al., “Nobiletin and Eriodictyol Suppress Release of IL-1β, CXCL8, IL-6,
    and MMP-9 from LPS, SARS-CoV-2 Spike Protein, and Ochratoxin A-Stimulated
    Human Microglia,” Int. J. Mol. Sci. 2025, 26, 2: 636. doi: 10.3390/ijms26020636
  41. Vargas-Castro R et al., “Calcitriol prevents SARS-CoV spike-induced inflammation
    in human trophoblasts through downregulating ACE2 and TMPRSS2 expression,” J
    Steroid Biochem Mol Biol 2025, 245: 106625. doi: 10.1016/j.jsbmb.2024.106625
  42. Visvabharathy L et al., “Case report: Treatment of long COVID with a SARS-CoV-2
    antiviral and IL-6 blockade in a patient with rheumatoid arthritis and SARS-CoV-2
    antigen persistence,” Front. Med. 2022, 9 (Sec. Infectious Diseases – Surveillance).
    doi: https://doi.org/10.3389/fmed.2022.1003103
  43. Yonker LM et al., “Multisystem inflammatory syndrome in children is driven by
    zonulin-dependent loss of gut mucosal barrier,” J Clin Invest. 2021, 131, 14:
    e149633. doi: https://doi.org/10.1172/JCI149633
  44. Youn JY et al., “Therapeutic application of estrogen for COVID-19: Attenuation of
    SARS-CoV-2 spike protein and IL-6 stimulated, ACE2-dependent NOX2 activation,
    ROS production and MCP-1 upregulation in endothelial cells,” Redox Biol. 2021, 46:
  45. doi: https://doi.org/10.1016/j.redox.2021.102099
  46. Yu J et al., “Direct activation of the alternative complement pathway by SARS-CoV-2
    spike proteins is blocked by factor D inhibition,” Blood 2020, 136, 18: 2080–2089.
    doi: https://doi.org/10.1182/blood.2020008248

HH. Toll-like receptors (TLRs)

  1. Aboudounya MM and RJ Heads, “COVID-19 and Toll-Like Receptor 4 (TLR4): SARSCoV-2 May Bind and Activate TLR4 to Increase ACE2 Expression, Facilitating Entry
    and Causing Hyperinflammation,” Mediators Inflamm. 2021: 8874339. doi:
    https://doi.org/10.1155/2021/8874339
  2. Burnett FN et al., “SARS-CoV-2 Spike Protein Intensifies Cerebrovascular
    Complications in Diabetic hACE2 Mice through RAAS and TLR Signaling Activation,”
    Int. J. Mol. Sci. 2023, 24, 22: 16394. doi: https://doi.org/10.3390/ijms242216394
  3. Carnevale R et al., “Toll-Like Receptor 4-Dependent Platelet-Related Thrombosis in
    SARS-CoV-2 Infection,” Circ. Res. 2023, 132, 3: 290– 305. doi:
    https://doi.org/10.1161/CIRCRESAHA.122.321541
  4. Corpetti C et al., “Cannabidiol inhibits SARS-Cov-2 spike (S) protein-induced
    cytotoxicity and inflammation through a PPARγ-dependent TLR4/NLRP3/Caspase-1
    signaling suppression in Caco-2 cell line,” Phytother. Res. 2021, 35, 12: 6893–
  5. doi: https://doi.org/10.1002/ptr.7302
  6. Fontes-Dantas FL, “SARS-CoV-2 Spike Protein Induces TLR4-Mediated Long- Term
    Cognitive Dysfunction Recapitulating Post-COVID-19 Syndrome in Mice,” Cell
    Reports 2023, 42, 3: 112189. doi: https://doi.org/10.1016/j.celrep.2023.112189
  7. Khan S et al., “SARS-CoV-2 Spike Protein Induces Inflammation via TLR2-Dependent
    Activation of the NF-κB Pathway,” eLife 2021, 10: e68563. doi: 10.7554/elife.68563
  8. Kim MJ et al., “The SARS-CoV-2 spike protein induces lung cancer migration and
    invasion in a TLR2-dependent manner,” Cancer Commun (London) 2023, 44, 2: 273–
  9. doi: https://doi.org/10.1002/cac2.12485
  10. Kircheis R and O Planz, “Could a Lower Toll-like Receptor (TLR) and NF-κB Activation
    Due to a Changed Charge Distribution in the Spike Protein Be the Reason for the
    Lower Pathogenicity of Omicron?” Int. J. Mol. Sci. 2022, 23, 11: 5966. doi:
    https://doi.org/10.3390/ijms23115966
  11. Loh JT et al., “Dok3 restrains neutrophil production of calprotectin during TLR4
    sensing of SARS-CoV-2 spike protein,” Front. Immunol. 2022, 13 (Sec. Molecular
    Innate Immunity). doi: https://doi.org/10.3389/fimmu.2022.996637
  12. Segura-Villalobos D et al., “Jacareubin inhibits TLR4-induced lung inflammatory
    response caused by the RBD domain of SARS-CoV-2 Spike protein,” Pharmacol.
    Rep. 2022, 74: 1315–1325. doi: https://doi.org/10.1007/s43440-022-00398-5
  13. Sirsendu J et al., “Cell-Free Hemoglobin Does Not Attenuate the E]ects of SARSCoV-2 Spike Protein S1 Subunit in Pulmonary Endothelial Cells,” Int. J. Mol. Sci.,
    2021, 22, 16: 9041. doi: https://doi.org/10.3390/ijms22169041
  14. Sung PS et al., “CLEC5A and TLR2 Are Critical in SARS-CoV-2-Induced NET
    Formation and Lung Inflammation,” J. Biomed. Sci. 2022, 29, 52. doi:
    https://doi.org/10.1186/s12929-022-00832-z
  15. Zaki H and S Khan, “SARS-CoV-2 spike protein induces inflammatory molecules
    through TLR2 in macrophages and monocytes,” J. Immunol. 2021, 206
    (1_supplement): 62.07. doi: https://doi.org/10.4049/jimmunol.206.Supp.62.07
  16. Zaki H and S Khan, “TLR2 senses spike protein of SARS-CoV-2 to trigger
    inflammation,” J. Immunol. 2022, 208 (1_Supplement): 125.30. doi:
    https://doi.org/10.4049/jimmunol.208.Supp.125.30
  17. Zhao Y et al., “SARS-CoV-2 spike protein interacts with and activates TLR4,” Cell
    Res. 2021, 31: 818–820. doi: https://doi.org/10.1038/s41422-021-00495-9

Colabore por favor con nosotros para que podamos incluir mas información y llegar a más personas: contribución en mercado pago o paypal por única vez, Muchas Gracias!

Via PAYPAL: Euros o dólares click aqui

ARGENTINA 10.000$ar https://mpago.la/1srgnEY
5.000$ar https://mpago.la/1qzSyt9
1.000$ar  https://mpago.la/1Q1NEKM

Solicite nuestro CBU contactenos

Descargar libros desde https://cienciaysaludnatural.com/recursos