Compilado por Dr. Martin Wucher, MSC Dent Sc (eq DDS), Dr Byram Bridle, PhD, Dr. Steven Hatfill, Erik Sass, et al. Extracto de CienciaySaludNatural.com

I. Compilado de investigación sobre la patogenicidad de la proteína pico o spike (n=375)
Originalmente parte de la cubierta externa del virus SARS-CoV2, donde funciona como una «llave» para “abrir” (infectar) las células, las proteínas pico o spike también son producidas en grandes cantidades por las «vacunas» de ARNm, desencadenando una respuesta inmune de corta duración en forma de anticuerpos. Sin embargo, cada vez hay más pruebas que demuestran que la proteína pico o spike es nociva por sí misma, incluidos más de 370 artículos científicos revisados por expertos.
La sección Categorías organiza la investigación en categorías amplias que incluyen tejidos y sistemas de órganos afectados, mecanismos y pruebas de patología clínica. Dado que estas áreas se solapan, muchos artículos aparecen más de una vez en la segunda sección.
II. Estudios de biodistribución de la proteína pico o spike y del ARNm de la «vacuna» (n=61)
Además de las características patógenas del antígeno de la proteína pico, más de 60 estudios revisados por pares han demostrado que tanto el ARNm de la «vacuna» que codifica para el antígeno de la proteína de la espiga como la propia proteína pico pueden penetrar en tejidos distantes, causando daños sistémicos.
Los estudios de biodistribución muestran que tanto el ARNm de la «vacuna» que codifica para el antígeno de la proteína pico como la propia proteína pico pueden penetrar en tejidos distantes, causando daños sistémicos a una variedad de órganos y sistemas de órganos, incluida la placenta. El compilado de esta sección presenta más de 60 estudios revisados por pares (n=61) que documentan la amplia distribución del ARNm de la «vacuna» y la proteína pico asociada en seres humanos y en experimentación animal.
Estos artículos confirman que el ARNm de la «vacuna» y la proteína pico o spike pueden alcanzar tejidos y órganos como el corazón, el hígado, el cerebro, los pulmones, la placenta, el cordón umbilical, la leche materna, los ganglios linfáticos, el timo, los riñones, el bazo, la vejiga, el intestino grueso, los ojos, las glándulas suprarrenales, los ovarios, los testículos, la médula ósea, la piel, las glándulas lagrimales y el apéndice.
Además, un pequeño número de estudios demuestran la capacidad de la proteína pico viral para atravesar importantes barreras fisiológicas independientemente del resto del virus, lo que sugiere que la proteína de la espiga derivada de una «vacuna» idéntica puede hacer lo mismo. Se incluye un cuadro con resumen de los resultados de docenas de estudios recogidos en esta sección II, , que muestran qué componentes y productos de la «vacuna» se examinaron (ARNm, PNL y/o proteína pico) y los principales tejidos y órganos afectados. Tomados en conjunto con las pruebas de la patogenicidad de la proteína pico, estos hallazgos sugieren que las «vacunas» de ARNm pueden distribuir la proteína píco, nociva y de larga duración, de forma incontrolable por todo el cuerpo, causando lesiones y la muerte por diversos medios.

Ver estudios compilados de esta sección, descargar PDF
.III. Estudios sobre la persistencia del ARNm de la proteína pico y de la «vacuna» (n=41)
Más de 40 estudios revisados por expertos confirman que el ARNm de la «vacuna» y el antígeno proteico resultante persisten en los tejidos de los receptores humanos de la «vacuna» y de los animales de experimentación durante mucho más tiempo de lo que afirman las autoridades de salud pública; se ha demostrado que las proteínas pico virales, resultantes de la infección natural, persisten incluso durante más tiempo, lo que refuerza la preocupación de que la proteína pico idéntica de la «vacuna» también pueda durar más de lo previsto.
Ver estudios compilados de esta sección, descargar PDF
IV. Estudios de toxicidad y alergenicidad de nanopartículas lipídicas (n=80)
80 artículos revisados por expertos muestran que las nanopartículas lipídicas ionizables (NPL) utilizadas en las inyecciones experimentales de ARNm son altamente inflamatorias por sí mismas, incluido su componente de polietilenglicol (PEG), una causa establecida de anafilaxia (una reacción alérgica extrema).
Ver estudios compilados de esta sección, descargar PDF
V. Compilado de la impronta inmunitaria de la “vacuna” COVID-19 (n=140)
La impronta inmunitaria, denominada «pecado antigénico original» por Thomas Francis Jr., se produce cuando los linfocitos B de memoria producidos en respuesta a una infección vírica inicial dominan las respuestas posteriores a virus relacionados. 140 artículos revisados por expertos sugieren que las «vacunas» COVID imprimieron el sistema inmunitario de los receptores a través de la exposición a la proteína de la espiga «salvaje» de la cepa original Wuhan, moldeando su respuesta a las variantes posteriores de formas potencialmente dañinas.
Ver estudios compilados de esta sección, descargar PDF
VI. Compilado de investigaciónes sobre vacunas y variantes virales del SARS-CoV2 (n=70)
Además de la patogenicidad, distribución y larga persistencia de la proteína pico de la «vacuna», esta colección de 70 artículos revisados por expertos sugiere que las “vacunas” aplicaron una fuerte presión selectiva al virus del SRAS-CoV2, que mutaba rápidamente, dando lugar rápidamente a variantes resistentes a la «vacuna».
Ver estudios compilados de esta sección, descargar PDF
CATEGORIES
A. General/Overview (36)
B. ACE2 (23)
C. Amyloid, prion-like properties (14)
D. Autoimmune (14)
E. Blood pressure/hypertension (2)
F. CD147 (13)
G. Cell membrane permeability, barrier dysfunction (16)
H. Cerebral, cerebrovascular, neurologic, blood-brain barrier, cognitive (28)
I. Clinical pathology (23)
J. Clotting, platelets, hemoglobin (35)
K. Cytokines, chemokines, interferon, interleukins (36)
L. Endothelial (30)
M. Gastrointestinal (8)
N. Immune dysfunction (8)
O. Macrophages, monocytes, neutrophils (32)
P. MAPK/NF-kB (10)
Q. Mast cells (4)
R. Microglia (10)
S. Microvascular (8)
T. MIS-C, pediatric (8)
U. Mitochondria/metabolism (9)
V. Myocarditis, cardiac, cardiomyopathy (22)
W. NLRP3 (15)
X. Ocular, ophthalmic, conjunctival (3)
Y. Other cell signaling (20)
Z. PASC, post COVID, long COVID (22)
AA. Pregnancy, fetal, placenta (7)
BB. Pulmonary, respiratory (33)
CC. Renin-Angiotensin-Aldosterone System (3)
DD. Senescence/aging (3)
EE. Stem cells (3)
FF. Syncytia/cell fusion (10)
GG. Therapeutics (44)
HH. Toll-like receptors (TLRs) (15)
A. General/Overview
- Acevedo-Whitehouse K and R Bruno, “Potential health risks of mRNA-based vaccine
therapy: A hypothesis,” Med. Hypotheses 2023, 171: 111015. doi:
https://doi.org/10.1016/j.mehy.2023.111015 – https://cienciaysaludnatural.com/riesgos-potenciales-para-la-salud-de-la-terapia-con-vacunas-basadas-en-arnm/ - Almehdi AM et al., “SARS-CoV-2 Spike Protein: Pathogenesis, Vaccines, and
Potential Therapies,” Infection 2021, 49, 5: 855–876. doi:
https://doi.org/10.1007/s15010-021-01677-8 - Baldari CT et al., “Emerging Roles of SARS-CoV-2 Spike-ACE2 in Immune Evasion
and Pathogenesis,” Trends Immunol. 2023, 44, 6. doi: 10.1016/j.it.2023.04.001 - Bansal S et al., “Cutting Edge: Circulating Exosomes with COVID Spike Protein Are
Induced by BNT162b2 (Pfizer-BioNTech) Vaccination prior to Development of
Antibodies: A Novel Mechanism for Immune Activation by mRNA Vaccines,” J.
Immunol. 2021, 207, 10: 2405–2410. doi: 10.4049/jimmunol.2100637 - Bellucci M et al., “Post-SARS-CoV-2 infection and post-vaccine-related neurological
complications share clinical features and the same positivity to anti-ACE2
antibodies,” Front. Immunol. 2024, 15 (Sec. Multiple Sclerosis and
Neuroimmunology). doi: https://doi.org/10.3389/fimmu.2024.1398028 - Boros LG et al., “Long-lasting, biochemically modified mRNA, and its frameshifted
recombinant spike proteins in human tissues and circulation after COVID-19
vaccination,” Pharmacol Res Perspect 2024, 12, 3: e1218. doi: 10.1002/prp2.1218 - Brady M et al., “Spike protein multiorgan tropism suppressed by antibodies targeting
SARS-CoV-2,” Comm. Biol. 2021, 4, 1318. doi: 10.1038/s42003-021-02856-x - Cari L et al., “Di]erences in the expression levels of SARS-CoV-2 spike protein in
cells treated with mRNA-based COVID-19 vaccines: a study on vaccines from the
real world,” Vaccines 2023, 11, 4: 879. doi: 10.3390/vaccines11040879 - Cosentino M and Franca Marino, “Understanding the Pharmacology of COVID- 19
mRNA Vaccines: Playing Dice with the Spike?” Int. J. Mol. Sci. 2022, 23, 18: 10881.
doi: https://doi.org/10.3390/ijms231810881 - Fertig TE et al., “Beyond the injection site: identifying the cellular targets of mRNA
vaccines,” J Cell Ident 2024, 3, 1. doi: 10.47570/joci.2024.004 - Fertig TE et al., “Vaccine mRNA Can Be Detected in Blood at 15 Days Post
Vaccination,” Biomedicines 2022, 10, 7: 1538. doi: 10.3390/biomedicines10071538 - Giannotta G et al., “COVID-19 mRNA Vaccines: The Molecular Basis of Some
Adverse Events,” Vaccines 2023, 11, 4: 747. doi: 10.3390/vaccines11040747 - Gussow AB et al., “Genomic Determinants of Pathogenicity in SARS-CoV-2 and
Other Human Coronaviruses,” PNAS 117, 2020, 26: 15193–15199. doi:
https://doi.org/10.1073/pnas.2008176117 - Halma MTJ et al., “Strategies for the Management of Spike Protein-Related
Pathology,” Microorganisms 2023, 11, 5: 1308, doi:
https://doi.org/10.3390/microorganisms11051308 - Kent SJ et al., “Blood Distribution of SARS-CoV-2 Lipid Nanoparticle mRNA Vaccine
in Humans,” ACS Nano 2024, 18, 39: 27077-27089. doi: 10.1021/acsnano.4c11652 - Kowarz E et al., “Vaccine-induced COVID-19 mimicry syndrome,” eLife 2022, 11:
e74974. doi: https://doi.org/10.7554/eLife.74974 - Lamprinou M et al., “COVID-19 vaccines adverse events: potential molecular
mechanisms,” Immunol. Res. 2023, 71: 356-372. doi: 10.1007/s12026-023-09357-5 - Lehmann KJ, “Impact of SARS-CoV-2 Spikes on Safety of Spike-Based COVID-19
Vaccinations,” Immunome Res. 2024, 20, 2: 1000267. doi: 10.35248/1745-
7580.24.20.267 - Lehmann KJ, “Suspected Causes of the Specific Intolerance Profile of Spike-Based
Covid-19 Vaccines,” Med. Res. Arch 2024, 12, 9. doi: 10.18103/mra.v12i9.5704 - Lesgard JF et al., “Toxicity of SARS-CoV-2 Spike Protein from the Virus and Produced
from COVID-19 mRNA or Adenoviral DNA Vaccines,” Arch Microbiol Immun 2023, 7,
3: 121- 138. doi: 10.26502/ami.936500110 - Letarov AV et al., “Free SARS-CoV-2 Spike Protein S1 Particles May Play a Role in the
Pathogenesis of COVID-19 Infection,” Biochemistry (Moscow) 2021, 86, 257–261.
doi: https://doi.org/10.1134/S0006297921030032 - Nuovo JG et al., “Endothelial Cell Damage Is the Central Part of COVID-19 and a
Mouse Model Induced by Injection of the S1 Subunit of the Spike Protein,” Ann.
Diagn. Pathol. 2021, 51, 151682. doi: 10.1016/j.anndiagpath.2020.151682 - Pallas RM, “Innate and adaptative immune mechanisms of COVID-19 vaccines.
Serious adverse events associated with SARS-CoV-2 vaccination: A systematic
review,” Vacunas (English ed.) 2024, 25, 2: 285.e1-285.e94. doi:
https://doi.org/10.1016/j.vacune.2024.05.002 - Parry PL et al., “‘Spikeopathy’: COVID-19 Spike Protein Is Pathogenic, from Both
Virus and Vaccine mRNA,” Biomedicine 2023, 11, 8: 2287. doi:
https://doi.org/10.3390/biomedicines11082287 - Pateev I et al., “Biodistribution of RNA Vaccines and of Their Products: Evidence
from Human and Animal Studies,” Biomedicines 2024, 12, 1: 59.
doi: https://doi.org/10.3390/biomedicines12010059 - Peluso MJ et al., “Plasma-based antigen persistence in the post-acute phase of
COVID-19,” Lancet 2024, 24, 6: E345-E347. doi: 10.1016/S1473-3099(24)00211-1 - Rzymski P and Andrzej Fal, “To aspirate or not to aspirate? Considerations for the
COVID-19 vaccines,” Pharmacol. Rep 2022, 74: 1223–1227. doi:
https://doi.org/10.1007/s43440-022-00361-4 - Saadi F et al., “Spike glycoprotein is central to coronavirus pathogenesis-parallel
between m-CoV and SARS-CoV-2,” Ann Neurosci. 2021, 28 (3-4): 201–218. doi:
https://doi.org/10.1177/09727531211023755 - Sacco K et al., “Immunopathological signatures in multisystem inflammatory
syndrome in children and pediatric COVID-19,” Nat. Med. 2022, 28: 1050-1062. doi:
https://doi.org/10.1038/s41591-022-01724-3 - Scholkmann F and CA May, “COVID-19, post-acute COVID-19 syndrome (PACS,
‘long COVID’) and post-COVID-19 vaccination syndrome (PCVS, ‘post-COVIDvacsyndrome’): Similarities and di]erences,” Pathol Res Pract. 2023, 246: 154497. doi:
https://doi.org/10.1016/j.prp.2023.154497 - Schwartz L et al., “Toxicity of the spike protein of COVID-19 is a redox shift
phenomenon: A novel therapeutic approach,” Free Rad. Biol. Med. 2023, 206: 106– - doi: https://doi.org/10.1016/j.freeradbiomed.2023.05.034
- Swank Z, et al. “Persistent Circulating Severe Acute Respiratory Syndrome
Coronavirus 2 Spike Is Associated With Post-acute Coronavirus Disease 2019
Sequelae,” Clin. Infect. Dis 2023, 76, 3: e487–e490. doi: 10.1093/cid/ciac722 - Theoharides TC, “Could SARS-CoV-2 Spike Protein Be Responsible for Long-COVID
Syndrome?” Mol. Neurobiol. 2022, 59, 3: 1850–1861. doi: 10.1007/s12035-021-
02696-0 - Theoharides TC and P. Conti, “Be Aware of SARS-CoV-2 Spike Protein: There Is More
Than Meets the Eye,” J Biol Reg Homeostat Agents 2021, 35, 3: 833–838. doi:
10.23812/THEO_EDIT_3_21 - Trougakos IP et al., “Adverse E]ects of COVID-19 mRNA Vaccines: The Spike
Hypothesis,” Trends Mol Med. 2022, 28, 7: 542–554. doi:
10.1016/j.molmed.2022.04.007 - Tyrkalska SD et al., “Di]erential proinflammatory activities of spike proteins of
SARS-CoV-2 variants of concern,” Sci. Adv. 2022, 8, 37: eabo0732. doi:
10.1126/sciadv.abo0732
B. ACE2
- Aboudounya MM and RJ Heads, “COVID-19 and Toll-Like Receptor 4 (TLR4): SARSCoV-2 May Bind and Activate TLR4 to Increase ACE2 Expression, Facilitating Entry
and Causing Hyperinflammation,” Mediators Inflamm. 2021, 8874339. doi:
https://doi.org/10.1155/2021/8874339 - Aksenova AY et al., “The increased amyloidogenicity of Spike RBD and pHdependent binding to ACE2 may contribute to the transmissibility and pathogenic
properties of SARS-CoV-2 omicron as suggested by in silico study,” Int J Mol Sci.
2022, 23, 21: 13502. doi: https://doi.org/10.3390/ijms232113502 - Angeli F et al., “COVID-19, vaccines and deficiency of ACE2 and other
angiotensinases. Closing the loop on the ‘Spike e]ect’,” Eur J. Intern. Med. 2022,
103: 23–28. doi: 10.1016/j.ejim.2022.06.015 - Baldari CT et al., “Emerging Roles of SARS-CoV-2 Spike-ACE2 in Immune Evasion
and Pathogenesis,” Trends Immunol. 2023, 44, 6. doi: 10.1016/j.it.2023.04.001 - Bellucci M et al., “Post-SARS-CoV-2 infection and post-vaccine-related neurological
complications share clinical features and the same positivity to anti-ACE2
antibodies,” Front. Immunol. 2024, 15 (Sec. Multiple Sclerosis and
Neuroimmunology). doi: https://doi.org/10.3389/fimmu.2024.1398028 - Devaux CA and L. Camoin-Jau, “Molecular mimicry of the viral spike in the SARSCoV-2 vaccine possibly triggers transient dysregulation of ACE2, leading to vascular
and coagulation dysfunction similar to SARS-CoV-2 infection,” Viruses 2023, 15, 5: - doi: https://doi.org/10.3390/v15051045
- Foster K et al., “Abstract 111: Cerebrovascular E]ects Of Pre/post-losartan
Treatment In Humanized ACE2 Knock-in Mice After SARS-CoV-2 Spike Protein
Injection,” Stroke 2023, 54. doi: https://doi.org/10.1161/str.54.suppl_1.11 - Gao X et al., “Spike-Mediated ACE2 Down-Regulation Was Involved in the
Pathogenesis of SARS-CoV-2 Infection,” J. Infect. 2022, 85, 4: 418–427. doi:
10.1016/j.jinf.2022.06.030 - Jabi MSA et al., “Abstract 53: Covid-19 Spike-protein Causes Cerebrovascular
Rarefaction And Deteriorates Cognitive Functions In A Mouse Model Of Humanized
ACE2,” Stroke 2022, 53. doi: https://doi.org/10.1161/str.53.suppl_1.53 - Kato Y et al., “TRPC3-Nox2 Protein Complex Formation Increases the Risk of SARSCoV-2 Spike Protein-Induced Cardiomyocyte Dysfunction through ACE2
Upregulation,” Int. J. Mol. Sci. 2023, 24, 1: 102. doi: 10.3390/ijms24010102 - Ken W et al., “Low dose radiation therapy attenuates ACE2 depression and
inflammatory cytokines induction by COVID-19 viral spike protein in human
bronchial epithelial cells,” Int J Radiat Biol. 2022, 98, 10: 1532-1541. doi:
https://doi.org/10.1080/09553002.2022.2055806 - Lei Y et al., “SARS-CoV-2 Spike Protein Impairs Endothelial Function via
Downregulation of ACE 2,” Circulation Research 2021, 128, 9: 1323–1326. doi:
https://doi.org/10.1161/CIRCRESAHA.121.318902 - Lu J and PD Sun, “High a]inity binding of SARS-CoV-2 spike protein enhances ACE2
carboxypeptidase activity,” J. Biol. Chem 2020, 295, 52: p18579-18588. doi:
10.1074/jbc.RA120.015303 - Maeda Y et al., “Di]erential Ability of Spike Protein of SARS-CoV-2 Variants to
Downregulate ACE2,” Int. J. Mol. Sci. 2024, 25, 2: 1353. doi: 10.3390/ijms25021353 - Magro N et al., “Disruption of the blood-brain barrier is correlated with spike
endocytosis by ACE2 + endothelia in the CNS microvasculature in fatal COVID-19.
Scientific commentary on ‘Detection of blood-brain barrier disruption in brains of
patients with COVID-19, but no evidence of brain penetration by SARS-CoV-2’,” Acta
Neuropathol. 2024, 147, 1: 47. doi: https://doi.org/10.1007/s00401-023-02681-y - Montezano AC et al., “SARS-CoV-2 spike protein induces endothelial inflammation
via ACE2 independently of viral replication,” Sci Rep. 2023, 13, 1: 14086. doi:
https://doi.org/10.1038/s41598-023-41115-3 - Satta S et al., “An engineered nano-liposome-human ACE2 decoy neutralizes SARSCoV-2 Spike protein-induced inflammation in both murine and human
macrophages,” Theranostics 2022, 12, 6: 2639–2657. doi: 10.7150/thno.66831 - Solopov et al., “Alcohol increases lung angiotensin-converting enzyme 2 expression
and exacerbates severe acute respiratory syndrome coronavirus 2 spike protein
subunit 1-induced acute lung injury in K18-hACE2 transgenic mice,” Am J Pathol
2022, 192, 7: 990-1000. doi: 10.1016/j.ajpath.2022.03.012 - Sui Y et al., “SARS-CoV-2 Spike Protein Suppresses ACE2 and Type I Interferon
Expression in Primary Cells From Macaque Lung Bronchoalveolar Lavage,” Front.
Immunol. 2021, 12. doi: https://doi.org/10.3389/fimmu.2021.658428 - Tetz G and Victor Tetz, “Prion-Like Domains in Spike Protein of SARS-CoV-2 Di]er
across Its Variants and Enable Changes in A]inity to ACE2,” Microorganisms 2025,
10, 2: 280. doi: https://doi.org/10.3390/microorganisms10020280 - Vargas-Castro R et al., “Calcitriol prevents SARS-CoV spike-induced inflammation
in human trophoblasts through downregulating ACE2 and TMPRSS2 expression,” J
Steroid Biochem Mol Biol 2025, 245: 106625. doi: 10.1016/j.jsbmb.2024.106625 - Youn JY et al., “Therapeutic application of estrogen for COVID-19: Attenuation of
SARS-CoV-2 spike protein and IL-6 stimulated, ACE2-dependent NOX2 activation,
ROS production and MCP-1 upregulation in endothelial cells,” Redox Biol. 2021, 46: - doi: https://doi.org/10.1016/j.redox.2021.102099
- Zhang S et al., “SARS-CoV-2 Binds Platelet ACE2 to Enhance Thrombosis in COVID19,” J. Hematol. Oncol. 2020, 13, 120: 120. doi: 10.1186/s13045-020-00954-7
C. Amyloid, prion-like properties
- Aksenova AY et al., “The increased amyloidogenicity of Spike RBD and pHdependent binding to ACE2 may contribute to the transmissibility and pathogenic
properties of SARS-CoV-2 omicron as suggested by in silico study,” Int. J. Mol. Sci.
2022, 23, 21: 13502. doi: https://doi.org/10.3390/ijms232113502 - Cao S et al., “Spike Protein Fragments Promote Alzheimer’s Amyloidogenesis,” ACS
Appl. Mater. Interfaces 2023, 15, 34: 40317-40329. doi: 10.1021/acsami.3c09815 - Chakrabarti SS et al., “Rapidly Progressive Dementia with Asymmetric Rigidity
Following ChAdOx1 nCoV-19 Vaccination,” Aging Dis. 2022, 13, 3: 633-636. doi:
10.14336/AD.2021.1102 - Freeborn J, “Misfolded Spike Protein Could Explain Complicated COVID-19
Symptoms,” Medical News Today, May 26, 2022,
https://www.medicalnewstoday.com/articles/misfolded-spike-protein-couldexplain-complicated-covid-19-symptoms - Idrees D and Vijay Kumar, “SARS-CoV-2 Spike Protein Interactions with
Amyloidogenic Proteins: Potential Clues to Neurodegeneration,” Biochemical and
Biophysical Research Communications 2021, 554 : 94–98. doi:
https://doi.org/10.1016/j.bbrc.2021.03.100 - Hillard P et al., “Abstract WP400: SARS-CoV-2 Spike Protein Accelerates Alzheimer’s
Disease-Related Dementia Through Increased Cerebrovascular Inflammation in
hACE2 Mice,” Stroke 2025, 56. doi: https://doi.org/10.1161/str.56.suppl_1.WP400 - Ma G et al., “SARS-CoV-2 Spike protein S2 subunit modulates γ-secretase and
enhances amyloid-β production in COVID-19 neuropathy,” Cell Discov 2022, 8, 99.
doi: https://doi.org/10.1038/s41421-022-00458-3 - Nahalka J, “1-L Transcription of SARS-CoV-2 Spike Protein S1 Subunit,” Int. J. Mol.
Sci. 2024, 25, 8: 4440. doi: https://doi.org/10.3390/ijms25084440 - Nyström S, “Amyloidogenesis of SARS-CoV-2 Spike Protein,” J. Am. Chem.
Soc. 2022, 144, 8945–8950. doi: https://doi.org/10.1021/jacs.2c03925 - Petrlova J et al., “SARS-CoV-2 spike protein aggregation is triggered by bacterial
lipopolysaccharide,” FEBS Lett. 2022, 596:2566–2575. doi:
https://doi.org/10.1002/1873-3468.14490 - Petruk G et al., “SARS-CoV-2 spike protein binds to bacterial lipopolysaccharide and
boosts proinflammatory activity,” J. Mol. Cell Biol. 2020, 12: 916-932. doi:
https://doi.org/10.1093/jmcb/mjaa067 - Rong Z et al., “Persistence of spike protein at the skull-meninges-brain axis may
contribute to the neurological sequelae of COVID-19,” Cell Host Microbe 2024, 26:
S1931-3128(24)00438-4. doi: 10.1016/j.chom.2024.11.007 - Tetz G and Victor Tetz, “Prion-Like Domains in Spike Protein of SARS-CoV-2 Di]er
across Its Variants and Enable Changes in A]inity to ACE2,” Microorganisms 2022,
10, 2: 280, doi: https://doi.org/10.3390/microorganisms10020280 - Wang J et al., “SARS-CoV-2 Spike Protein S1 Domain Accelerates α-Synuclein
Phosphorylation and Aggregation in Cellular Models of Synucleinopathy,” Mol
Neurobiol. 2024, 61, 4: 2446-2458. doi: 10.1007/s12035-023-03726-9
D. Autoimmune
- Anft M et al., “E]ect of immunoadsorption on clinical presentation and immune
alterations in COVID-19–induced and/or aggravated ME/CFS,” Mol. Ther. 2025, 33, 6:
2886-2899. doi: 10.1016/j.ymthe.2025.01.007 - Chen Y et al., “New-onset autoimmune phenomena post-COVID-19 vaccination,”
Immunology 2022, 165, 4: 386-401. doi: https://doi.org/10.1111/imm.13443 - Cheng MY et al., “Clinical Research into Central Nervous System Inflammatory
Demyelinating Diseases Related to COVID-19 Vaccines,” Diseases 2024, 12, 3: 60.
doi: https://doi.org/10.3390/diseases12030060 - Diaz M et al., “SARS-CoV-2 spike peptide analysis reveals a highly conserved region
that elicits potentially pathogenic autoantibodies: implications to pan-coronavirus
vaccine development,” Front. Immunol. 2025, 16 (Sec. B Cell Biology). doi:
https://doi.org/10.3389/fimmu.2025.1488388 - Elrashdy F et al., “Autoimmunity roots of the thrombotic events after COVID-19
vaccination,” Autoimmun. Rev. 2021, 20, 11: 102941. doi:
10.1016/j.autrev.2021.102941 - Heil M, “Self-DNA driven inflammation in COVID-19 and after mRNA-based
vaccination: lessons for non-COVID-19 pathologies,” Front. Immunol., 2023, 14. doi:
https://doi.org/10.3389/fimmu.2023.1259879 - Kanduc D, “From Anti-SARS-CoV-2 Immune Responses to COVID-19 via Molecular
Mimicry,” Antibodies 2020, 9, 3: 33. doi: https://doi.org/10.3390/antib9030033 - Kanduc D and Y Shoenfeld, “Molecular mimicry between SARS-CoV-2 spike
glycoprotein and mammalian proteomes: implications for the vaccine,” Immunol
Res 2020, 68: 310-313. doi: https://doi.org/10.1007/s12026-020-09152-6 - Lee AR et al., “SARS-CoV-2 spike protein promotes inflammatory cytokine activation
and aggravates rheumatoid arthritis,” Cell Commun Signal. 2023, 21, 1: 44. doi:
https://doi.org/10.1186/s12964-023-01044-0 - Nunez-Castilla J et al., “Potential autoimmunity resulting from molecular mimicry
between SARS-CoV-2 spike and human proteins,” Viruses 2022, 14, 7: 1415. doi:
https://doi.org/10.3390/v14071415 - Polykretis P et al., “Autoimmune Inflammatory Reactions Triggered by the COVID-19
Genetic Vaccines in Terminally Di]erentiated Tissues,” Autoimmunity 2023, 56: - doi: https://doi.org/10.1080/08916934.2023.2259123
- Rodriguez Y et al., “Autoinflammatory and autoimmune conditions at the crossroad
of COVID-19,” J. Autoimmun. 2020, 114: 102506. doi: 10.1016/j.jaut.2020.102506 - Vojdani A and D Kharrazian, “Potential antigenic cross-reactivity between SARSCoV-2 and human tissue with a possible link to an increase in autoimmune
diseases,” Clin Immunol. 2020, 217: 108480. doi: 10.1016/j.clim.2020.108480 - Vojdani A et al., “Reaction of Human Monoclonal Antibodies to SARS-CoV-2
Proteins With Tissue Antigens: Implications for Autoimmune Diseases,” Front.
Immunol. 2021, 11 (Sec. Autoimmune and Autoinflammatory Disorders). doi:
https://doi.org/10.3389/fimmu.2020.617089
E. Blood pressure/hypertension
- Angeli F et al., “The spike e]ect of acute respiratory syndrome coronavirus 2 and
coronavirus disease 2019 vaccines on blood pressure,” Eur J Intern Med. 2023, 109:
12-21. doi: 10.1016/j.ejim.2022.12.004 - Sun Q et al., “SARS-coV-2 spike protein S1 exposure increases susceptibility to
angiotensin II-induced hypertension in rats by promoting central neuroinflammation
and oxidative stress,” Neurochem. Res. 2023, 48, 3016–3026.
doi: https://doi.org/10.1007/s11064-023-03949-1
F. CD147
- Avolio E et al., “The SARS-CoV-2 Spike Protein Disrupts Human Cardiac Pericytes
Function through CD147 Receptor-Mediated Signalling: A Potential Non-infective
Mechanism of COVID-19 Microvascular Disease,” Clin. Sci. 2021, 135, 24: 2667– - doi: https://doi.org/10.1042/CS20210735
- Loh D, “The potential of melatonin in the prevention and attenuation of oxidative
hemolysis and myocardial injury from cd147 SARS-CoV-2 spike protein receptor
binding,” Melatonin Research 2020, 3, 3: 380-416. doi: 10.32794/mr11250069 - Maugeri N et al., “Unconventional CD147-Dependent Platelet Activation Elicited by
SARS-CoV-2 in COVID-19,” J. Thromb. Haemost. 2021, 20, 2: 434–448.
doi: 10.1111/jth.15575
G. Cell membrane permeability, barrier dysfunction
- Asandei A et al., “Non-Receptor-Mediated Lipid Membrane Permeabilization by the
SARS-CoV-2 Spike Protein S1 Subunit,” ACS Appl. Mater. Interfaces 2020, 12, 50:
55649–55658. doi: https://doi.org/10.1021/acsami.0c17044 - Biancatelli RMLC, et al. “The SARS-CoV-2 spike protein subunit S1 induces COVID19-like acute lung injury in Kappa18-hACE2 transgenic mice and barrier dysfunction
in human endothelial cells,” Am. J. Physiol. Lung Cell. Mol. Physiol. 2021, 321: L477–
L484. doi: https://doi.org/10.1152/ajplung.00223.2021 - Biering SB et al., “SARS-CoV-2 Spike Triggers Barrier Dysfunction and Vascular Leak
via Integrins and TGF-β Signaling,” Nat. Commun. 2022, 13: 7630. doi:
https://doi.org/10.1038/s41467-022-34910-5 - Buzhdygan TP et al., “The SARS-CoV-2 Spike Protein Alters Barrier Function in 2D
Static and 3D Microfluidic in-Vitro Models of the Human Blood-Brain
Barrier,” Neurobiol. Dis. 2020, 146: 105131. doi: 10.1016/j.nbd.2020.105131 - Cappalletti G et al., “iPSC-derived human cortical organoids display profound
alterations of cellular homeostasis following SARS-CoV-2 infection and Spike
protein exposure,” FASEB J 2025 39, 4: e70396. doi: 10.1096/fj.202401604RRR - Chaves JCS et al., “Di]erential Cytokine Responses of APOE3 and APOE4 Blood–
brain Barrier Cell Types to SARS-CoV-2 Spike Proteins,” J. Neuroimmune Pharmacol.
2024, 19, 22. doi: https://doi.org/10.1007/s11481-024-10127-9 - Correa Y et al., “SARS-CoV-2 spike protein removes lipids from model membranes
and interferes with the capacity of high-density lipoprotein to exchange lipids,” J.
Colloid Interface Sci. 2021, 602: 732-739. doi: 10.1016/j.jcis.2021.06.056 - DeOre BJ et al., “SARS-CoV-2 Spike Protein Disrupts Blood-Brain Barrier Integrity via
RhoA Activation,” J Neuroimmune Pharmacol. 2021, 16, 4:722-728. Doi:
https://doi.org/10.1007/s11481-021-10029-0 - Fajloun Z et al., “COVID-19 and Ehlers-Danlos Syndrome: The Dangers of the Spike
Protein of SARS-CoV-2,” Infect. Disord. Drug Targets 2023, 23, 3: 26-28. doi:
https://doi.org/10.2174/1871526523666230104145108 - Guo Y and V Kanamarlapudi, “Molecular Analysis of SARS-CoV-2 Spike ProteinInduced Endothelial Cell Permeability and vWF Secretion,” Int. J. Mol. Sci. 2023, 24,
6: 5664. doi: https://doi.org/10.3390/ijms24065664 - Luchini A et al., “Lipid bilayer degradation induced by SARS-CoV-2 spike protein as
revealed by neutron reflectometry,” Sci. Rep. 2021, 11: 14867. doi:
https://doi.org/10.1038/s41598-021-93996-x - Luo Y et al., “SARS-Cov-2 spike induces intestinal barrier dysfunction through the
interaction between CEACAM5 and Galectin-9,” Front. Immunol. 2024, 15. doi:
https://doi.org/10.3389/fimmu.2024.1303356 - Magro N et al., “Disruption of the blood-brain barrier is correlated with spike
endocytosis by ACE2 + endothelia in the CNS microvasculature in fatal COVID-19.
Scientific commentary on ‘Detection of blood-brain barrier disruption in brains of
patients with COVID-19, but no evidence of brain penetration by SARS-CoV-2’,” Acta
Neuropathol. 2024, 147, 1: 47. doi: https://doi.org/10.1007/s00401-023-02681-y - Raghavan S et al., “SARS-CoV-2 Spike Protein Induces Degradation of Junctional
Proteins That Maintain Endothelial Barrier Integrity,” Front. Cardiovasc.
Med. 2021, 8, 687783. doi: https://doi.org/10.3389/fcvm.2021.687783 - Ruben ML et al., “The SARS-CoV-2 spike protein subunit S1 induces COVID-19-like
acute lung injury in Κ18-hACE2 transgenic mice and barrier dysfunction in human
endothelial cells,” Am J Physiol Lung Cell Mol Physiol. 2021, 321, 2: L477-L484.
doi: https://doi.org/10.1152/ajplung.00223.2021 - Yang K et al., “SARS-CoV-2 spike protein receptor-binding domain perturbates
intracellular calcium homeostasis and impairs pulmonary vascular endothelial
cells, ” Signal Transduct. Target. Ther. 2023, 8, 276. doi: 10.1038/s41392-023-01556- - 8
H. Cerebral, cerebrovascular, neurologic, blood-brain barrier, cognitive
- Bellucci M et al., “Post-SARS-CoV-2 infection and post-vaccine-related neurological
complications share clinical features and the same positivity to anti-ACE2
antibodies,” Front. Immunol. 2024, 15 (Sec. Multiple Sclerosis and
Neuroimmunology). doi: https://doi.org/10.3389/fimmu.2024.1398028 - Burnett FN et al., “SARS-CoV-2 Spike Protein Intensifies Cerebrovascular
Complications in Diabetic hACE2 Mice through RAAS and TLR Signaling Activation,”
Int. J. Mol. Sci. 2023, 24, 22: 16394. doi: https://doi.org/10.3390/ijms242216394 - Choi JY et al., “SARS-CoV-2 spike S1 subunit protein-mediated increase of betasecretase 1 (BACE1) impairs human brain vessel cells,” Biochem. Biophys. Res.
Commun. 2022, 625, 20: 66-71. doi: https://doi.org/10.1016/j.bbrc.2022.07.113 - Clough E et al., “Mitochondrial Dynamics in SARS-COV2 Spike Protein Treated
Human Microglia: Implications for Neuro-COVID,” J. Neuroimmune Pharmacol.
2021, 4, 16: 770–784. doi: https://doi.org/10.1007/s11481-021-10015-6 - Coly M, et al., “Subacute monomelic radiculoplexus neuropathy following
Comirnaty(c) (Pfizer-BioNTech COVID-19) vaccination: A case report,” Revue
Neurologique 2023, 179, 6: 636-639. doi: 10.1016/j.neurol.2023.02.063 - DeOre BJ et al., “SARS-CoV-2 Spike Protein Disrupts Blood-Brain Barrier Integrity via
RhoA Activation,” J Neuroimmune Pharmacol. 2021, 16, 4: 722-728. Doi:
https://doi.org/10.1007/s11481-021-10029-0 - Erdogan MA, “Prenatal SARS-CoV-2 Spike Protein Exposure Induces Autism-Like
Neurobehavioral Changes in Male Neonatal Rats,” J Neuroimmune Pharmacol.
2023, 18, 4: 573-591. doi: 10.1007/s11481-023-10089-4 - Erickson MA et al., “Blood-brain barrier penetration of non-replicating SARS-CoV-2
and S1 variants of concern induce neuroinflammation which is accentuated in a
mouse model of Alzheimer’s disease,” Brain Behav Immun 2023, 109: 251-268. doi:
https://doi.org/10.1016/j.bbi.2023.01.010 - Fontes-Dantas FL, “SARS-CoV-2 Spike Protein Induces TLR4-Mediated Long- Term
Cognitive Dysfunction Recapitulating Post-COVID-19 Syndrome in Mice,” Cell
Reports 2023, 42, 3: 112189. doi: https://doi.org/10.1016/j.celrep.2023.112189 - Foster K et al., “Abstract 111: Cerebrovascular E]ects Of Pre/post-losartan
Treatment In Humanized ACE2 Knock-in Mice After SARS-CoV-2 Spike Protein
Injection,” Stroke 2023, 54. doi: https://doi.org/10.1161/str.54.suppl_1.11 - Frank MG et al., “Exploring the immunogenic properties of SARS-CoV-2 structural
proteins: PAMP:TLR signaling in the mediation of the neuroinflammatory and
neurologic sequelae of COVID-19,” Brain Behav Immun 2023, 111. doi:
https://doi.org/10.1016/j.bbi.2023.04.009 - Frank MG et al., “SARS-CoV-2 S1 subunit produces a protracted priming of the
neuroinflammatory, physiological, and behavioral responses to a remote immune
challenge: A role for corticosteroids,” Brain Behav. Immun. 2024, 121: 87-103. doi:
https://doi.org/10.1016/j.bbi.2024.07.034 - Heath SP et al., “SARS-CoV-2 Spike Protein Exacerbates Thromboembolic
Cerebrovascular Complications in Humanized ACE2 Mouse Model,” Transl Stroke
Res. 2024. doi: https://doi.org/10.1007/s12975-024-01301-5 - Hillard P et al., “Abstract WP400: SARS-CoV-2 Spike Protein Accelerates Alzheimer’s
Disease-Related Dementia Through Increased Cerebrovascular Inflammation in
hACE2 Mice,” Stroke 2025, 56. doi: https://doi.org/10.1161/str.56.suppl_1.WP400 - Jabi MSA et al., “Abstract 53: Covid-19 Spike-protein Causes Cerebrovascular
Rarefaction And Deteriorates Cognitive Functions In A Mouse Model Of Humanized
ACE2,” Stroke 2022, 53. doi: https://doi.org/10.1161/str.53.suppl_1.53 - Khaddaj-Mallat R et al., “SARS-CoV-2 deregulates the vascular and immune
functions of brain pericytes via Spike protein,” Neurobiol. Dis. 2021, 161, 105561.
doi: https://doi.org/10.1016/j.nbd.2021.105561 - Kim ES et al., “Spike Proteins of SARS-CoV-2 Induce Pathological Changes in
Molecular Delivery and Metabolic Function in the Brain Endothelial Cells,” Viruses
2021, 13, 10: 2021. doi: https://doi.org/10.3390/v13102021 - Lykhmus O et al., “Immunization with 674–685 fragment of SARS-Cov-2 spike
protein induces neuroinflammation and impairs episodic memory of
mice,” Biochem. Biophys. Res. Commun. 2022, 622: 57–63. doi:
https://doi.org/10.1016/j.bbrc.2022.07.016 - Magro N et al., “Disruption of the blood-brain barrier is correlated with spike
endocytosis by ACE2 + endothelia in the CNS microvasculature in fatal COVID-19.
Scientific commentary on ‘Detection of blood-brain barrier disruption in brains of
patients with COVID-19, but no evidence of brain penetration by SARS-CoV-2’,” Acta
Neuropathol. 2024, 147, 1: 47. doi: https://doi.org/10.1007/s00401-023-02681-y - Oh J et al., “SARS-CoV-2 Spike Protein Induces Cognitive Deficit and Anxiety-Like
Behavior in Mouse via Non-cell Autonomous Hippocampal Neuronal Death,”
Scientific Reports 2022, 12, 5496. doi: https://doi.org/10.1038/s41598-022-09410-7 - Oka N et al., “SARS-CoV-2 S1 protein causes brain inflammation by reducing
intracerebral acetylcholine production,” iScience 2023, 26, 6: 106954. doi:
10.1016/j.isci.2023.106954 - Ota N et al., “Expression of SARS-CoV-2 spike protein in cerebral Arteries:
Implications for hemorrhagic stroke Post-mRNA vaccination,” J. Clin. Neurosci.
2025, 136: 111223. doi: https://doi.org/10.1016/j.jocn.2025.111223 - Peluso MJ et al., “SARS-CoV-2 and mitochondrial proteins in neural-derived
exosomes of COVID-19,” Ann Neurol 2022, 91, 6: 772-781. doi: 10.1002/ana.26350 - Petrovszki D et al., “Penetration of the SARS-CoV-2 Spike Protein across the BloodBrain Barrier, as Revealed by a Combination of a Human Cell Culture Model System
and Optical Biosensing,” Biomedicines 2022, 10, 1: 188. doi:
https://doi.org/10.3390/biomedicines10010188 - Posa A, “Spike protein-related proteinopathies: A focus on the neurological side of
spikeopathies,” Ann Anat. – Anatomischer Anzeiger 2025, 260: 152662. doi:
https://doi.org/10.1016/j.aanat.2025.152662 - Rong Z et al., “Persistence of spike protein at the skull-meninges-brain axis may
contribute to the neurological sequelae of COVID-19,” Cell Host Microbe 2024, 26:
S1931-3128(24)00438-4. doi: 10.1016/j.chom.2024.11.007 - Suprewicz L et al., “Blood-brain barrier function in response to SARS-CoV-2 and its
spike protein,” Neurol. Neurochir Pol. 2023, 57: 14–25. doi:
10.5603/PJNNS.a2023.0014 - Suprewicz L et al., “Recombinant human plasma gelsolin reverses increased
permeability of the blood-brain barrier induced by the spike protein of the SARSCoV-2 virus,” J Neuroinflamm. 2022, 19, 1: 282. doi: 10.1186/s12974-022-02642-4 - Wu ML et al., “Mast cell activation triggered by SARS-CoV-2 causes inflammation in
brain microvascular endothelial cells and microglia,” Front. Cell. Infect. Microbiol.
2024, 14. doi: https://doi.org/10.3389/fcimb.2024.1358873
I. Clinical pathology
- Baumeier C et al., “Intramyocardial Inflammation after COVID-19 Vaccination: An
Endomyocardial Biopsy-Proven Case Series,” Int. J. Mol. Sci. 2022, 23: 6940. doi:
https://doi.org/10.3390/ijms23136940 - Burkhardt A, “Pathology Conference: Vaccine-Induced Spike Protein Production in
the Brain, Organs etc., now Proven,” Report24.news. 2022,
https://report24.news/pathologie-konferenz-impfinduzierte-spike-produktion-ingehirn-u-a-organen-nun-erwiesen/ - Codoni G et al., “Histological and serological features of acute liver injury after
SARS-CoV-2 vaccination,” JHP Rep. 2023, 5, 1: 100605. doi:
10.1016/j.jhepr.2022.100605 - Craddock V et al., “Persistent circulation of soluble and extracellular vesicle-linked
Spike protein in individuals with postacute sequelae of COVID-19,” J Med. Virol.
2023, 95, 2: e28568. doi: https://doi.org/10.1002/jmv.28568 - De Michele M et al., “Evidence of SARS-CoV-2 Spike Protein on Retrieved Thrombi
from COVID-19 Patients,” J. Hematol. Oncol. 2022, 15, 108. doi:
https://doi.org/10.1186/s13045-022-01329-w - De Sousa PMB et al., “Fatal Myocarditis following COVID-19 mRNA Immunization: A
Case Report and Di]erential Diagnosis Review,” Vaccines 2024, 12, 2: 194.
doi: https://doi.org/10.3390/vaccines12020194 - Gamblicher T et al., “SARS-CoV-2 spike protein is present in both endothelial and
eccrine cells of a chilblain-like skin lesion,” J Eur Acad Dermatol Venereol. 2020, 1,
10: e187-e189. doi: https://doi.org/10.1111/jdv.16970 - Gawaz A et al., “SARS-CoV-2–Induced Vasculitic Skin Lesions Are Associated with
Massive Spike Protein Depositions in Autophagosomes,” J Invest Dermatol. 2024,
144, 2: 369-377.e4. doi: https://doi.org/10.1016/j.jid.2023.07.018 - Hulscher N et al., “Autopsy findings in cases of fatal COVID-19 vaccine-induced
myocarditis,” ESC Heart Failure 2024. doi: https://doi.org/10.1002/ehf2.14680 - Ko CJ et al., “Discordant anti-SARS-CoV-2 spike protein and RNA staining in
cutaneous perniotic lesions suggests endothelial deposition of cleaved spike
protein,” J. Cutan Pathol 2021, 48, 1: 47–52. doi: https://doi.org/10.1111/cup.13866 - Magen E et al., “Clinical and Molecular Characterization of a Rare Case of
BNT162b2 mRNA COVID-19 Vaccine-Associated Myositis,” Vaccines 2022, 10: 1135.
doi: https://doi.org/10.3390/vaccines10071135 - Magro N et al., “Disruption of the blood-brain barrier is correlated with spike
endocytosis by ACE2 + endothelia in the CNS microvasculature in fatal COVID-19.
Scientific commentary on ‘Detection of blood-brain barrier disruption in brains of
patients with COVID-19, but no evidence of brain penetration by SARS-CoV-2’,” Acta
Neuropathol. 2024, 147, 1: 47. doi: https://doi.org/10.1007/s00401-023-02681-y - Matschke J et al., “Neuropathology of patients with COVID-19 in Germany: a postmortem case series,” Lancet Neurol. 2020, 19, 11: 919-929. doi: 10.1016/S1474-
4422(20)30308-2 - Mörz M, “A Case Report: Multifocal Necrotizing Encephalitis and Myocarditis after
BNT162b2 mRNA Vaccination against COVID-19,” Vaccines 2022, 10, 10: 1651. doi:
https://doi.org/10.3390/vaccines10101651 - Rong Z et al., “Persistence of spike protein at the skull-meninges-brain axis may
contribute to the neurological sequelae of COVID-19,” Cell Host Microbe 2024, 26:
S1931-3128(24)00438-4. doi: 10.1016/j.chom.2024.11.007 - Sano H et al., “A case of persistent, confluent maculopapular erythema following a
COVID-19 mRNA vaccination is possibly associated with the intralesional spike
protein expressed by vascular endothelial cells and eccrine glands in the deep
dermis,” J. Dermatol. 2023, 50: 1208–1212. doi: 10.1111/1346-8138.16816 - Sano S et al., “SARS-CoV-2 spike protein found in the acrosyringium and eccrine
gland of repetitive miliaria-like lesions in a woman following mRNA vaccination,” J.
Dermatol. 2024, 51, 9: e293-e295. doi: https://doi.org/10.1111/1346-8138.17204 - Santonja C et al., “COVID-19 chilblain-like lesion: immunohistochemical
demonstration of SARS-CoV-2 spike protein in blood vessel endothelium and sweat
gland epithelium in a polymerase chain reaction-negative patient,” Br J
Dermatol. 2020, 183, 4: 778-780. doi: https://doi.org/10.1111/bjd.19338 - Soares CD et al., “Oral vesiculobullous lesions as an early sign of COVID-19:
immunohistochemical detection of SARS-CoV-2 spike protein,” Br. J. Dermatol.
2021, 184, 1: e6. doi: https://doi.org/10.1111/bjd.19569 - Wu H et al., “Molecular evidence suggesting the persistence of residual SARS-CoV-2
and immune responses in the placentas of pregnant patients recovered from
COVID-19,” Cell Prolif. 2021, 54, 9: e13091. doi: https://doi.org/10.1111/cpr.13091 - Yamamoto M et al., “Persistent varicella zoster virus infection following mRNA
COVID-19 vaccination was associated with the presence of encoded spike protein
in the lesion,” J. Cutan Immunol. Allergy. 2022: 1-6. doi: 10.1002/cia2.12278 - Yonker LM et al., “Circulating Spike Protein Detected in Post–COVID-19 mRNA
Vaccine Myocarditis,” Circulation 2023, 147, 11. doi:
https://doi.org/10.1161/CIRCULATIONAHA.122.061025 - Yonker LM et al., “Multisystem inflammatory syndrome in children is driven by
zonulin-dependent loss of gut mucosal barrier,” J Clin Invest. 2021, 131, 14:
e149633. doi: https://doi.org/10.1172/JCI149633
J. Clotting, platelets, hemoglobin
- Al-Kuraishy HM et al., “Changes in the Blood Viscosity in Patients With SARS-CoV-2
Infection,” Front. Med. 2022, 9: 876017. doi: 10.3389/fmed.2022.876017 - Al-Kuraishy HM et al., “Hemolytic anemia in COVID-19,” Ann. Hematol. 2022, 101:
1887–1895. doi: 10.1007/s00277-022-04907-7 - Appelbaum K et al., “SARS-CoV-2 spike-dependent platelet activation in COVID-19
vaccine-induced thrombocytopenia,” Blood Adv. 2022, 6: 2250–2253. doi:
10.1182/bloodadvances.2021005050 - Becker RC et al., “The COVID-19 thrombus: distinguishing pathological,
mechanistic, and phenotypic features and management,” J. Thromb. Thrombolysis
2025, 58: 15-49. doi: https://doi.org/10.1007/s11239-024-03028-4 - Boschi C et al., “SARS-CoV-2 Spike Protein Induces Hemagglutination: Implications
for COVID-19 Morbidities and Therapeutics and for Vaccine Adverse E]ects,” Int. J.
Biol. Macromol. 2022, 23, 24: 15480, doi: https://doi.org/10.3390/ijms232415480 - Bye AP et al., “Aberrant glycosylation of anti-SARS-CoV-2 spike IgG is a
prothrombotic stimulus for platelets,” Blood 2021, 138, 6: 1481–9. doi:
https://doi.org/10.1182/blood.2021011871 - Carnevale R et al., “Toll-Like Receptor 4-Dependent Platelet-Related Thrombosis in
SARS-CoV-2 Infection,” Circ. Res. 2023, 132, 3: 290– 305. doi:
https://doi.org/10.1161/CIRCRESAHA.122.321541 - Cossenza LC et al., “Inhibitory e]ects of SARS-CoV-2 spike protein and BNT162b2
vaccine on erythropoietin-induced globin gene expression in erythroid precursor
cells from patients with β-thalassemia,” Exp. Hematol. 2024, 129, 104128. doi:
https://doi.org/10.1016/j.exphem.2023.11.002 - De Michele M et al., “Vaccine-induced immune thrombotic thrombocytopenia: a
possible pathogenic role of ChAdOx1 nCoV-19 vaccine-encoded soluble SARS-CoV2 spike protein,” Haematologica 2022, 107, 7: 1687–92. doi:
https://doi.org/10.3324/haematol.2021.280180 - Elrashdy F et al., “Autoimmunity roots of the thrombotic events after COVID-19
vaccination,” Autoimmun. Rev. 2021, 20, 11: 102941. doi:
10.1016/j.autrev.2021.102941 - Gasparello J et al., “Assessing the interaction between hemoglobin and the receptor
binding domain of SARS-CoV-2 spike protein through MARTINI coarse-grained
molecular dynamics,” Int. J. Biol. Macromol., 2023, 253: 127088.
doi: 10.1016/j.ijbiomac.2023.127088 - Grobbelaar LM et al., “SARS-CoV-2 Spike Protein S1 Induces Fibrin(ogen) Resistant
to Fibrinolysis: Implications for Microclot Formation in COVID-19,” Biosicence
Reports 2021, 41, 8: BSR20210611. doi: https://doi.org/10.1042/BSR20210611 - Heath SP et al., “SARS-CoV-2 Spike Protein Exacerbates Thromboembolic
Cerebrovascular Complications in Humanized ACE2 Mouse Model,” Transl Stroke
Res. 2024. doi: https://doi.org/10.1007/s12975-024-01301-5 - Iba T and JH Levy, “The roles of platelets in COVID-19-associated coagulopathy and
vaccine-induced immune thrombotic thrombocytopenia,” Trends Cardiovasc Med.
2022, 32, 1: 1-9. doi: https://doi.org/10.1016/j.tcm.2021.08.012 - Huynh TV et al., “Spike Protein of SARS-CoV-2 Activates Cardiac Fibrogenesis
through NLRP3 Inflammasomes and NF-κB Signaling,” Cells 2024, 13, 16: 1331.
doi: https://doi.org/10.3390/cells13161331 - Iba T and JH Levy, “The roles of platelets in COVID-19-associated coagulopathy and
vaccine-induced immune thrombotic thrombocytopenia,” Trends Cardiovasc Med.
2022, 32, 1: 1-9. doi: https://doi.org/10.1016/j.tcm.2021.08.012 - Jana S et al., “Cell-free hemoglobin does not attenuate the e]ects of SARS-CoV-2
spike protein S1 subunit in pulmonary endothelial cells,” Int. J. Mol. Sci. 2021, 22,
16: 9041. doi: https://doi.org/10.3390/ijms22169041 - Kim SY et al., “Characterization of heparin and severe acute respiratory syndromerelated coronavirus 2 (SARS-CoV-2) spike glycoprotein binding interactions,” Antivir
Res. 2020, 181: 104873. doi: https://doi.org/10.1016/j.antiviral.2020.104873 - Kircheis R, “Coagulopathies after Vaccination against SARS-CoV-2 May Be Derived
from a Combined E]ect of SARS-CoV-2 Spike Protein and Adenovirus VectorTriggered Signaling Pathways,” Int. J. Mol. Sci. 2021, 22, 19: 10791. doi:
https://doi.org/10.3390/ijms221910791 - Kuhn CC et al. “Direct Cryo-ET observation of platelet deformation induced by
SARS-CoV-2 spike protein,” Nat. Commun. 2023, 14, 620. doi:
https://doi.org/10.1038/s41467-023-36279-5 - Li T et al., “Platelets Mediate Inflammatory Monocyte Activation by SARS-CoV-2
Spike Protein,” J. Clin. Invest. 2022, 132, 4: e150101. doi: 10.1172/JCI150101 - Maugeri N et al., “Unconventional CD147-Dependent Platelet Activation Elicited by
SARS-CoV-2 in COVID-19,” J. Thromb. Haemost. 2021, 20, 2: 434–448, doi:
https://doi.org/10.1111/jth.15575 - Ota N et al., “Expression of SARS-CoV-2 spike protein in cerebral Arteries:
Implications for hemorrhagic stroke Post-mRNA vaccination,” J. Clin. Neurosci.
2025, 136: 111223. doi: https://doi.org/10.1016/j.jocn.2025.111223 - Passariello M et al., “Interactions of Spike-RBD of SARS-CoV-2 and Platelet Factor 4:
New Insights in the Etiopathogenesis of Thrombosis,” Int. J. Mol. Sci. 2021, 22, 16: - doi: https://doi.org/10.3390/ijms22168562
- Perico L et al., “SARS-CoV-2 Spike Protein 1 Activates Microvascular Endothelial
Cells and Complement System Leading to Platelet Aggregation,” Front.
Immunol. 2022, 13, 827146. doi: https://doi.org/10.3389/fimmu.2022.827146 - Roytenberg R et al., “Thymidine phosphorylase mediates SARS-CoV-2 spike protein
enhanced thrombosis in K18-hACE2TG mice,” Thromb. Res. 2024, 244, 8: 109195.
doi: 10.1016/j.thromres.2024.109195 - Russo A, et al., “Implication of COVID-19 on Erythrocytes Functionality: Red Blood
Cell Biochemical Implications and Morpho-Functional Aspects,” Int. J. Mol.
Sci. 2022, 23, 4: 2171. doi: https://doi.org/10.3390/ijms23042171 - Ryu JK et al., “Fibrin drives thromboinflammation and neuropathology in COVID-19,”
Nature 2024, 633: 905-913. doi: https://doi.org/10.1038/s41586-024-07873-4 - Scheim, DE. “A Deadly Embrace: Hemagglutination Mediated by SARS-CoV-2 Spike
Protein at its 22 N-Glycosylation Sites, Red Blood Cell Surface Sialoglycoproteins,
and Antibody,” Int. J. Mol. Sci. 2022, 23, 5: 2558. doi: 10.3390/ijms23052558 - Scheim DE et al., “Sialylated Glycan Bindings from SARS-CoV-2 Spike Protein to
Blood and Endothelial Cells Govern the Severe Morbidities of COVID-19,” Int. J. Mol.
Sci. 2023, 24, 23: 17039. doi: https://doi.org/10.3390/ijms242317039 - Sirsendu J et al., “Cell-Free Hemoglobin Does Not Attenuate the E]ects of SARSCoV-2 Spike Protein S1 Subunit in Pulmonary Endothelial Cells,” Int. J. Mol. Sci.,
2021, 22, 16: 9041. doi: https://doi.org/10.3390/ijms22169041 - Zhang S et al., “SARS-CoV-2 Binds Platelet ACE2 to Enhance Thrombosis in COVID19,” J. Hematol. Oncol. 2020, 13, 120: 120. doi: 10.1186/s13045-020-00954-7
- Zhang Z et al., “SARS-CoV-2 spike protein dictates syncytium-mediated lymphocyte
elimination,” Cell Death Diber. 2021, 28, 2765–2777. doi: 10.1038/s41418-021-
00782-3 - Zheng Y et al., “SARS-CoV-2 Spike Protein Causes Blood Coagulation and
Thrombosis by Competitive Binding to Heparan Sulfate,” Int. J. Biol. Macromol.
2021, 193: 1124–1129. doi: https://doi.org/10.1016/j.ijbiomac.2021.10.112 - Zhu W et al., “Prothrombotic antibodies targeting the spike protein’s receptorbinding domain in severe COVID-19,” Blood 2025, 145, 6: 635-647. doi:
https://doi.org/10.1182/blood.2024025010
K. Cytokines, chemokines, inteferon, interleukins
- Alghmadi A et al., “Altered Circulating Cytokine Profile Among mRNA-Vaccinated
Young Adults: A Year-Long Follow-Up Study,” Immun. Inflamm. Dis. 2025, 13, 4:
e70194. doi: https://doi.org/10.1002/iid3.70194 - Ao Z et al., “SARS-CoV-2 Delta spike protein enhances the viral fusogenicity and
inflammatory cytokine production,” iScience 2022, 25, 8: 104759. doi:
10.1016/j.isci.2022.104759 - Azzarone B et al., “Soluble SARS-CoV-2 Spike glycoprotein: considering some
potential pathogenic e]ects,” Front. Immunol. 2025, 16 (Sec. Cytokines and Soluble
Mediators in Immunity). doi: https://doi.org/10.3389/fimmu.2025.1616106 - Chaves JCS et al., “Di]erential Cytokine Responses of APOE3 and APOE4 Blood–
brain Barrier Cell Types to SARS-CoV-2 Spike Proteins,” J. Neuroimmune Pharmacol.
2024, 19, 22. doi: https://doi.org/10.1007/s11481-024-10127-9 - Chittasupho C et al., “Targeting spike glycoprotein S1 mediated by NLRP3
inflammasome machinery and the cytokine releases in A549 lung epithelial cells by
nanocurcumin,” Pharmaceuticals (Basel) 2023, 16, 6: 862. doi:
10.3390/ph16060862 - Das T et al., “N-glycosylation of the SARS-CoV-2 spike protein at Asn331 and Asn343
is involved in spike-ACE2 binding, virus entry, and regulation of IL-6,” Microbiol.
Immunol. 2024, 68, 5: 165-178. doi: https://doi.org/10.1111/1348-0421.13121 - Duarte C, “Age-dependent e]ects of the recombinant spike protein/SARS-CoV-2 on
the M-CSF- and IL-34-di]erentiated macrophages in vitro,” Biochem. Biophys. Res.
Commun. 2021, 546: 97–102. doi: https://doi.org/10.1016/j.bbrc.2021.01.104 - Forsyth CB et al., “The SARS-CoV-2 S1 spike protein promotes MAPK and NF-kB
activation in human lung cells and inflammatory cytokine production in human lung
and intestinal epithelial cells,” Microorganisms 2022, 10, 10: 1996.
doi: https://doi.org/10.3390/microorganisms10101996 - Freitas RS et al., “SARS-CoV-2 Spike antagonizes innate antiviral immunity by
targeting interferon regulatory factor 3,” Front Cell Infect Microbiol. 2021, 11: - doi: https://doi.org/10.3389/fcimb.2021.789462
- Gasparello J et al., “In vitro induction of interleukin-8 by SARS-CoV-2 Spike protein is
inhibited in bronchial epithelial IB3-1 cells by a miR-93-5p agomiR,” Int.
Immunopharmacol. 2021, 101: 108201. doi: 10.1016/j.intimp.2021.108201 - Gasparello J et al., “Sulforaphane inhibits the expression of interleukin-6 and
interleukin-8 induced in bronchial epithelial IB3-1 cells by exposure to the SARSCoV-2 Spike protein,” Phytomedicine 2021, 87: 153583. doi:
https://doi.org/10.1016/j.phymed.2021.153583 - Ghazanfari D et al., “Mechanistic insights into SARS-CoV-2 spike protein induction
of the chemokine CXCL10,” Sci. Rep. 2024, 14: 11179. doi: 10.1038/s41598-024-
61906-6 - Gracie NP et al., “Cellular signalling by SARS-CoV-2 spike protein,” Microbiology
Australia 2024, 45, 1: 13-17. doi: https://doi.org/10.1071/MA24005 - Gu T et al., “Cytokine Signature Induced by SARS-CoV-2 Spike Protein in a Mouse
Model,” Front. Immunol., 2021 (Sec. Inflammation). doi:
10.3389/fimmu.2020.621441 - Jugler C et al, “SARS-CoV-2 Spike Protein-Induced Interleukin 6 Signaling Is Blocked
by a Plant-Produced Anti-Interleukin 6 Receptor Monoclonal Antibody,”
Vaccines 2021, 9, 11: 1365. https://doi.org/10.3390/vaccines9111365 - Kawata D et al., “Diverse pro-inflammatory ability of mutated spike protein derived
from variant strains of SARS-CoV-2,” Cytokine 2024, 178: 156592. doi:
https://doi.org/10.1016/j.cyto.2024.156592 - Lee AR et al., “SARS-CoV-2 spike protein promotes inflammatory cytokine activation
and aggravates rheumatoid arthritis,” Cell Commun Signal. 2023, 21, 1: 44. doi:
https://doi.org/10.1186/s12964-023-01044-0 - Liang S et al., “SARS-CoV-2 spike protein induces IL-18-mediated cardiopulmonary
inflammation via reduced mitophagy,” Signal Transduct Target Ther 2023, 8, 103. doi:
https://doi.org/10.1038/s41392-023-01368-w - Liu T et al., “RS-5645 attenuates inflammatory cytokine storm induced by SARSCoV-2 spike protein and LPS by modulating pulmonary microbiota,” Int. J. Biol. Sci.
2021, 17, 13: 3305–3319. doi: 10.7150/ijbs.63329 - Liu X et al., “SARS-CoV-2 spike protein-induced cell fusion activates the cGASSTING pathway and the interferon response,” Sci Signal. 2022, 15, 729: eabg8744.
doi: 10.1126/scisignal.abg8744 - Niu C et al., “SARS-CoV-2 spike protein induces the cytokine release syndrome by
stimulating T cells to produce more IL-2,” Front. Immunol. 2024, 15: 1444643. doi:
https://doi.org/10.3389/fimmu.2024.1444643 - Norris B et al., “Evaluation of Glutathione in Spike Protein of SARS-CoV-2 Induced
Immunothrombosis and Cytokine Dysregulation,” Antioxidants 2024, 13, 3: 271.
doi: https://doi.org/10.3390/antiox13030271 - Olajide OA et al., “Induction of Exaggerated Cytokine Production in Human
Peripheral Blood Mononuclear Cells by a Recombinant SARS-CoV-2 Spike
Glycoprotein S1 and Its Inhibition by Dexamethasone,” Inflammation 2021, 44:
1865–1877. doi: https://doi.org/10.1007/s10753-021-01464-5 - Park YJ et al., “D-dimer and CoV-2 spike-immune complexes contribute to the
production of PGE2 and proinflammatory cytokines in monocytes,” PLoS
Pathog., 2022, 18, 4: e1010468. doi: https://doi.org/10.1371/journal.ppat.1010468 - Patra T et al., “SARS-CoV-2 spike protein promotes IL-6 trans-signaling by activation
of angiotensin II receptor signaling in epithelial cells,” PLoS Pathog. 2020, 16:
e1009128. doi: https://doi.org/10.1371/journal.ppat.1009128 - Samsudin S et al., “SARS-CoV-2 spike protein as a bacterial lipopolysaccharide
delivery system in an overzealous inflammatory cascade,” J. Mol. Biol. 2022, 14, 9:
mjac058. doi: https://doi.org/10.1093/jmcb/mjac058 - Schroeder JT and AP Bieneman, “The S1 Subunit of the SARS-CoV-2 Spike protein
activates human monocytes to produce cytokines linked to COVID-19: relevance to
galectin-3,” Front Immunol. 2022, 13: 831763. doi: 10.3389/fimmu.2022.831763 - Sebastio AI et al., “CuMV VLPs containing the RBM from SARS-CoV-2 spike protein
drive dendritic cell activation and Th1 polarization,” Pharmaceutics 2023, 15, 3: 825.
doi: https://doi.org/10.3390/pharmaceutics15030825 - Sharma VK et al., “Nanocurcumin Potently Inhibits SARS-CoV-2 Spike ProteinInduced Cytokine Storm by Deactivation of MAPK/NF-κB Signaling in Epithelial
Cells,” ACS Appl. Bio Mater. 2022, 5, 2: 483–491. doi: 10.1021/acsabm.1c00874 - Sui Y et al., “SARS-CoV-2 Spike Protein Suppresses ACE2 and Type I Interferon
Expression in Primary Cells From Macaque Lung Bronchoalveolar Lavage,” Front.
Immunol. 2021, 12. doi: https://doi.org/10.3389/fimmu.2021.658428 - Tsilioni I et al., “Nobiletin and Eriodictyol Suppress Release of IL-1β, CXCL8, IL-6,
and MMP-9 from LPS, SARS-CoV-2 Spike Protein, and Ochratoxin A-Stimulated
Human Microglia,” Int. J. Mol. Sci. 2025, 26, 2: 636. doi: 10.3390/ijms26020636 - Tsilioni S et al., “Recombinant SARS-CoV-2 spike protein and its receptor binding
domain stimulate release of di]erent pro-inflammatory mediators via activation of
distinct receptors on human microglia cells,” Mol Neurobiol. 2023, 60, 11: 6704–14.
doi: 10.1007/s12035-023-03493-7 - Tsilioni S et al., “Recombinant SARS-CoV-2 Spike Protein Stimulates Secretion of
Chymase, Tryptase, and IL-1beta from Human Mast Cells, Augmented by IL-33,” Int.
J. Mol. Sci. 2023, 24, 11: 9487. doi: https://doi.org/10.3390/ijms24119487 - Youn JY et al., “Therapeutic application of estrogen for COVID-19: Attenuation of
SARS-CoV-2 spike protein and IL-6 stimulated, ACE2-dependent NOX2 activation,
ROS production and MCP-1 upregulation in endothelial cells,” Redox Biol. 2021, 46: - doi: https://doi.org/10.1016/j.redox.2021.102099
- Zhang Q et al., “Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)
membrane (M) and spike (S) proteins antagonize host type i interferon response,”
Front Cell Infect Microbiol 2021, 11: 766922. doi: 10.3389/fcimb.2021.766922 - Zhang RG et al., “SARS-CoV-2 spike protein receptor binding domain promotes IL-6
and IL-8 release via ATP/P2Y2 and ERK1/2 signaling pathways in human bronchial
epithelia,” Mol. Immunol. 2024, 167: 53-61. doi: 10.1016/j.molimm.2024.02.005
L. Endothelial
- Bhargavan B and GD Kanmogne, “SARS-CoV-2 spike proteins and cell–cell
communication inhibits TFPI and induces thrombogenic factors in human lung
microvascular endothelial cells and neutrophils: implications for COVID-19
coagulopathy pathogenesis,” Int. J. Mol. Sci. 2022, 23, 18: 10436. doi:
https://doi.org/10.3390/ijms231810436 - Biancatelli RMLC, et al. “The SARS-CoV-2 spike protein subunit S1 induces COVID19-like acute lung injury in Kappa18-hACE2 transgenic mice and barrier dysfunction
in human endothelial cells,” Am. J. Physiol. Lung Cell. Mol. Physiol. 2021, 321: L477–
L484. doi: https://doi.org/10.1152/ajplung.00223.2021 - Castro-Robles B et al., “Distinct response patterns of endothelial markers to the
BNT162b2 mRNA COVID-19 booster vaccine are associated with the spike-specific
IgG antibody production,” Front. Immunol. 2025, 15 (Sec. Vaccines and Molecular
Therapeutics). doi: https://doi.org/10.3389/fimmu.2024.1471401 - Du Preez HN et al., “COVID-19 vaccine adverse events: Evaluating the
pathophysiology with an emphasis on sulfur metabolism and endotheliopathy,” Eur
J Clin Invest. 2024, 54, 10: e14296. doi: https://doi.org/10.1111/eci.14296 - Gamblicher T et al., “SARS-CoV-2 spike protein is present in both endothelial and
eccrine cells of a chilblain-like skin lesion,” J Eur Acad Dermatol Venereol. 2020, 1,
10: e187-e189. doi: https://doi.org/10.1111/jdv.16970 - Gultom M et al., “Sustained Vascular Inflammatory E]ects of SARS-CoV-2 Spike
Protein on Human Endothelial Cells,” Inflammation 2024. doi:
https://doi.org/10.1007/s10753-024-02208-x - Guo Y and V Kanamarlapudi, “Molecular Analysis of SARS-CoV-2 Spike ProteinInduced Endothelial Cell Permeability and vWF Secretion,” Int. J. Mol. Sci. 2023, 24,
6: 5664. doi: https://doi.org/10.3390/ijms24065664 - Jana S et al., “Cell-free hemoglobin does not attenuate the e]ects of SARS-CoV-2
spike protein S1 subunit in pulmonary endothelial cells,” Int. J. Mol. Sci. 2021, 22,
16: 9041. doi: https://doi.org/10.3390/ijms22169041 - Kulkoviene G et al., “Di]erential Mitochondrial, Oxidative Stress and Inflammatory
Responses to SARS-CoV-2 Spike Protein Receptor Binding Domain in Human Lung
Microvascular, Coronary Artery Endothelial and Bronchial Epithelial Cells,” Int. J.
Mol. Sci. 2024, 25, 6: 3188. doi: https://doi.org/10.3390/ijms25063188 - Marrone L et al., “Tirofiban prevents the e]ects of SARS-CoV-2 spike protein on
macrophage activation and endothelial cell death,” Heliyon, 2024, 10, 15, e35341.
doi: 10.1016/j.heliyon.2024.e35341 - Meyer K et al., “SARS-CoV-2 Spike Protein Induces Paracrine Senescence and
Leukocyte Adhesion in Endothelial Cells,” J. Virol. 2021, 95: e0079421. doi:
https://doi.org/10.1128/jvi.00794-21 - Montezano AC et al., “SARS-CoV-2 spike protein induces endothelial inflammation
via ACE2 independently of viral replication,” Sci Rep. 2023, 13, 1: 14086. doi:
https://doi.org/10.1038/s41598-023-41115-3 - Nuovo JG et al., “Endothelial Cell Damage Is the Central Part of COVID-19 and a
Mouse Model Induced by Injection of the S1 Subunit of the Spike Protein,” Ann.
Diagn. Pathol. 2021, 51, 151682. doi: 10.1016/j.anndiagpath.2020.151682 - Perico L et al., “SARS-CoV-2 and the spike protein in endotheliopathy,” Trends
Microbiol. 2024, 32, 1: 53-67. doi: 10.1016/j.tim.2023.06.004 - Perico L et al., “SARS-CoV-2 Spike Protein 1 Activates Microvascular Endothelial
Cells and Complement System Leading to Platelet Aggregation,” Front.
Immunol. 2022, 13, 827146. doi: https://doi.org/10.3389/fimmu.2022.827146 - Raghavan S et al., “SARS-CoV-2 Spike Protein Induces Degradation of Junctional
Proteins That Maintain Endothelial Barrier Integrity,” Front. Cardiovasc.
Med. 2021, 8, 687783. doi: https://doi.org/10.3389/fcvm.2021.687783 - Ratajczak MZ et al., “SARS-CoV-2 Entry Receptor ACE2 Is Expressed on Very Small
CD45- Precursors of Hematopoietic and Endothelial Cells and in Response to Virus
Spike Protein Activates the Nlrp3 Inflammasome,” Stem Cell Rev Rep. 2021, 17, 1:
266-277. doi: https://doi.org/10.1007/s12015-020-10010-z - Robles JP et al., “The Spike Protein of SARS-CoV-2 Induces Endothelial
Inflammation through Integrin α5β1 and NF-κB Signaling,” J. Biol. Chem. 2022, 298,
3: 101695. doi: https://doi.org/10.1016/j.jbc.2022.101695 - Rotoli BM et al., “Endothelial cell activation by SARS-CoV-2 spike S1 protein: A
crosstalk between endothelium and innate immune cells,” Biomedicines 2021, 9, 9: - doi: https://doi.org/10.3390/biomedicines9091220
- Ruben ML et al., “The SARS-CoV-2 spike protein subunit S1 induces COVID-19-like
acute lung injury in Κ18-hACE2 transgenic mice and barrier dysfunction in human
endothelial cells,” Am J Physiol Lung Cell Mol Physiol. 2021, 321, 2: L477-L484.
doi: https://doi.org/10.1152/ajplung.00223.2021 - Sano H et al., “A case of persistent, confluent maculopapular erythema following a
COVID-19 mRNA vaccination is possibly associated with the intralesional spike
protein expressed by vascular endothelial cells and eccrine glands in the deep
dermis,” J. Dermatol. 2023, 50: 1208–1212. doi: 10.1111/1346-8138.16816 - Santonja C et al., “COVID-19 chilblain-like lesion: immunohistochemical
demonstration of SARS-CoV-2 spike protein in blood vessel endothelium and sweat
gland epithelium in a polymerase chain reaction-negative patient,” Br J
Dermatol. 2020, 183, 4: 778-780. doi: https://doi.org/10.1111/bjd.19338 - Scheim DE et al., “Sialylated Glycan Bindings from SARS-CoV-2 Spike Protein to
Blood and Endothelial Cells Govern the Severe Morbidities of COVID-19,” Int. J. Mol.
Sci. 2023, 24, 23: 17039. doi: https://doi.org/10.3390/ijms242317039 - Sirsendu J et al., “Cell-Free Hemoglobin Does Not Attenuate the E]ects of SARSCoV-2 Spike Protein S1 Subunit in Pulmonary Endothelial Cells,” Int. J. Mol. Sci.,
2021, 22, 16: 9041. doi: https://doi.org/10.3390/ijms22169041 - Stern B et al., “SARS-CoV-2 spike protein induces endothelial dysfunction in 3D
engineered vascular networks,” J. Biomed. Mater. Res. A. 2023, 112, 4: 524-533. doi:
https://doi.org/10.1002/jbm.a.37543 - Villacampa A et al., “SARS-CoV-2 S protein activates NLRP3 inflammasome and
deregulates coagulation factors in endothelial and immune cells,” Cell Commun.
Signal. 2024, 22, 38. doi: https://doi.org/10.1186/s12964-023-01397-6 - Wu ML et al., “Mast cell activation triggered by SARS-CoV-2 causes inflammation in
brain microvascular endothelial cells and microglia,” Front. Cell. Infect. Microbiol.
2024, 14. doi: https://doi.org/10.3389/fcimb.2024.1358873 - Yang K et al., “SARS-CoV-2 spike protein receptor-binding domain perturbates
intracellular calcium homeostasis and impairs pulmonary vascular endothelial
cells,” Signal Transduct. Target. Ther. 2023, 8, 276. doi: 10.1038/s41392-023-01556-
8 - Youn JY et al., “Therapeutic application of estrogen for COVID-19: Attenuation of
SARS-CoV-2 spike protein and IL-6 stimulated, ACE2-dependent NOX2 activation,
ROS production and MCP-1 upregulation in endothelial cells,” Redox Biol. 2021, 46: - doi: https://doi.org/10.1016/j.redox.2021.102099
- Zekri-Nechar K et al., “Spike Protein Subunits of SARS-CoV-2 Alter Mitochondrial
Metabolism in Human Pulmonary Microvascular Endothelial Cells: Involvement of
Factor Xa,” Dis. Markers 2022, 1118195. doi: https://doi.org/10.1155/2022/1118195
M. Gastrointestinal
- Forsyth CB et al., “The SARS-CoV-2 S1 spike protein promotes MAPK and NF-kB
activation in human lung cells and inflammatory cytokine production in human lung
and intestinal epithelial cells,” Microorganisms 2022, 10, 10: 1996.
doi: https://doi.org/10.3390/microorganisms10101996 - Li Z et al., “SARS-CoV-2 pathogenesis in the gastrointestinal tract mediated by
Spike-induced intestinal inflammation,” Precis. Clin. Med. 2024, 7, 1: pbad034. doi:
https://doi.org/10.1093/pcmedi/pbad034 - Luo Y et al., “SARS-Cov-2 spike induces intestinal barrier dysfunction through the
interaction between CEACAM5 and Galectin-9,” Front. Immunol. 2024, 15. doi:
https://doi.org/10.3389/fimmu.2024.1303356 - Nascimento RR et al., “SARS-CoV-2 Spike protein triggers gut impairment since
mucosal barrier to innermost layers: From basic science to clinical relevance,”
Mucosal Immunol. 2024, 17, 4: 565-583. doi: 10.1016/j.mucimm.2024.03.00 - Yilmaz A et al., “Di]erential proinflammatory responses of colon epithelial cells to
SARS-CoV-2 spike protein and Pseudomonas aeruginosa lipopolysaccharide,” Turk J
Biochem. 2024. doi: https://doi.org/10.1515/tjb-2024-0144 - Yonker LM et al., “Multisystem inflammatory syndrome in children is driven by
zonulin-dependent loss of gut mucosal barrier,” J Clin Invest. 2021, 131, 14:
e149633. doi: https://doi.org/10.1172/JCI149633 - Zeng FM et al., “SARS-CoV-2 spike spurs intestinal inflammation via VEGF
production in enterocytes,” EMBO Mol Med. 2022, 14: e14844. doi:
https://doi.org/10.15252/emmm.202114844 - Zollner A et al., “Postacute COVID-19 is Characterized by Gut Viral Antigen
Persistence in Inflammatory Bowel Diseases,” Gastroenterology 2022, 163, 2: 495-
506.e8. doi: https://doi.org/10.1053/j.gastro.2022.04.037
N. Immune dysfunction
- Baldari CT et al., “Emerging Roles of SARS-CoV-2 Spike-ACE2 in Immune Evasion
and Pathogenesis,” Trends Immunol. 2023, 44, 6. doi: 10.1016/j.it.2023.04.001 - Bocquet-Garcon A, “Impact of the SARS-CoV-2 Spike Protein on the Innate Immune
System: A Review,” Cureus 2024, 16, 3: e57008. doi: 10.7759/cureus.57008 - Delgado JF et al., “SARS-CoV-2 spike protein vaccine-induced immune imprinting
reduces nucleocapsid protein antibody response in SARS-CoV-2 infection,” J.
Immunol. Res. 2022: 8287087. doi: https://doi.org/10.1155/2022/8287087 - Freitas RS et al., “SARS-CoV-2 Spike antagonizes innate antiviral immunity by
targeting interferon regulatory factor 3,” Front Cell Infect Microbiol. 2021, 11: - doi: https://doi.org/10.3389/fcimb.2021.789462
- Irrgang P et al., “Class switch toward noninflammatory, spike-specific IgG4
antibodies after repeated SARS-CoV-2 mRNA vaccination,” Sci. Immunol. 2022, 8, - doi: 10.1126/sciimmunol.ade2798
- Kim MJ et al., “The SARS-CoV-2 spike protein induces lung cancer migration and
invasion in a TLR2-dependent manner,” Cancer Commun (London), 2023, 44, 2:
273–277. doi: https://doi.org/10.1002/cac2.12485 - Onnis A et al., “SARS-CoV-2 Spike protein suppresses CTL-mediated killing by
inhibiting immune synapse assembly,” J Exp Med 2023, 220, 2: e20220906. doi:
https://doi.org/10.1084/jem.20220906 - Tu TH et al., “The identification of a SARs-CoV2 S2 protein derived peptide with
super-antigen-like stimulatory properties on T-cells,” Commun. Biol. 2025, 8, 14.
doi: https://doi.org/10.1038/s42003-024-07350-8
O. Macrophages, monocytes, neutrophils
- Ahn WM et al., “SARS-CoV-2 Spike Protein Stimulates Macropinocytosis in Murine
and Human Macrophages via PKC-NADPH Oxidase Signaling,”
Antioxidants 2024, 13, 2: 175. doi: https://doi.org/10.3390/antiox13020175 - Ait-Belkacem I et al., “SARS-CoV-2 spike protein induces a di]erential monocyte
activation that may contribute to age bias in COVID-19 severity,” Sci. Rep. 2022, 12: - doi: https://doi.org/10.1038/s41598-022-25259-2
- Barhoumi T et al., “SARS-CoV-2 coronavirus Spike protein-induced apoptosis,
inflammatory, and oxidative stress responses in THP-1-like-macrophages: potential
role of angiotensin-converting enzyme inhibitor (perindopril),” Front. Immunol.
2021, 12: 728896. doi: https://doi.org/10.3389/fimmu.2021.728896 - Bortolotti D et al., “SARS-CoV-2 Spike 1 Protein Controls Natural Killer Cell
Activation via the HLA-E/NKG2A Pathway,” Cells 2020, 9, 9: 1975.
doi: https://doi.org/10.3390/cells9091975 - Cao X et al., “Spike protein of SARS-CoV-2 activates macrophages and contributes
to induction of acute lung inflammation in male mice,” FASEB J. 2021, 35, e21801.
doi: https://doi.org/10.1096/fj.202002742RR - Chiok K et al., “Proinflammatory Responses in SARS-CoV-2 and Soluble Spike
Glycoprotein S1 Subunit Activated Human Macrophages,” Viruses 2023, 15, 3: 754.
doi: https://doi.org/10.3390/v15030754 - Cory TJ et al., “Metformin Suppresses Monocyte Immunometabolic Activation by
SARS-CoV-2 Spike Protein Subunit 1,” Front. Immunol. 2021, 12 (Sec. Cytokines and
Soluble Mediators in Immunity): 733921. doi: 10.3389/fimmu.2021.733921 - Del Re A et al., “Ultramicronized Palmitoylethanolamide Inhibits NLRP3
Inflammasome Expression and Pro-Inflammatory Response Activated by SARSCoV-2 Spike Protein in Cultured Murine Alveolar Macrophages,”
Metabolites 2021, 11, 9: 592. doi: https://doi.org/10.3390/metabo11090592 - Duarte C, “Age-dependent e]ects of the recombinant spike protein/SARS-CoV-2 on
the M-CSF- and IL-34-di]erentiated macrophages in vitro,” Biochem. Biophys. Res.
Commun. 2021, 546: 97–102. doi: https://doi.org/10.1016/j.bbrc.2021.01.104 - Fajloun Z et al., “Unveiling the Role of SARS-CoV-2 or mRNA Vaccine Spike Protein in
Macrophage Activation Syndrome (MAS),” Infect. Disord. Drug Targets 2025, 25, 2:
E220724232138. doi: https://doi.org/10.2174/0118715265341206240722050403 - Karwaciak I et al., “Nucleocapsid and Spike Proteins of the Coronavirus Sars-Cov-2
Induce Il6 in Monocytes and Macrophages—Potential Implications for Cytokine
Storm Syndrome,” Vaccines 2021, 9, 1, 54: 1–10. doi: 10.3390/vaccines9010054 - Li T et al., “Platelets Mediate Inflammatory Monocyte Activation by SARS-CoV-2
Spike Protein,” J. Clin. Invest. 2022, 132, 4: e150101. doi: 10.1172/JCI150101 - Liu Y et al., “The recombinant spike S1 protein induces injury and inflammation in
co-cultures of human alveolar epithelial cells and macrophages,” PLoS ONE 2025,
20, 2: e0318881. doi: https://doi.org/10.1371/journal.pone.0318881 - Loh JT et al., “Dok3 restrains neutrophil production of calprotectin during TLR4
sensing of SARS-CoV-2 spike protein,” Front. Immunol. 2022, 13 (Sec. Molecular
Innate Immunity). doi: https://doi.org/10.3389/fimmu.2022.996637 - Marrone L et al., “Tirofiban prevents the e]ects of SARS-CoV-2 spike protein on
macrophage activation and endothelial cell death,” Heliyon, 2024, 10, 15: e35341.
doi: 10.1016/j.heliyon.2024.e35341 - Miller GM et al., “SARS-CoV-2 and SARS-CoV-2 Spike protein S1 subunit Trigger
Proinflammatory Response in Macrophages in the Absence of Productive Infection,”
J. Immunol. 2023, 210 (1_Supplement): 71.30. doi:
10.4049/jimmunol.210.Supp.71.30 - Onnis A et al., “SARS-CoV-2 Spike protein suppresses CTL-mediated killing by
inhibiting immune synapse assembly,” J Exp Med 2023, 220, 2: e20220906. doi:
https://doi.org/10.1084/jem.20220906 - Palestra F et al. “SARS-CoV-2 Spike Protein Activates Human Lung
Macrophages,” Int. J. Mol. Sci. 2023, 24, 3: 3036. doi: 10.3390/ijms24033036 - Park C et al., “Murine alveolar Macrophages Rapidly Accumulate intranasally
Administered SARS-CoV-2 Spike Protein leading to neutrophil Recruitment and
Damage,” Elife 2024, 12, RP86764. doi: https://doi.org/10.7554/eLife.86764.3 - Park YJ et al., “D-dimer and CoV-2 spike-immune complexes contribute to the
production of PGE2 and proinflammatory cytokines in monocytes,” PLoS
Pathog. 2022, 18, 4: e1010468. doi: https://doi.org/10.1371/journal.ppat.1010468 - Park YJ et al., “Pyrogenic and inflammatory mediators are produced by polarized M1
and M2 macrophages activated with D-dimer and SARS-CoV-2 spike immune
complexes,” Cytokine 2024, 173: 156447. doi: 10.1016/j.cyto.2023.156447 - Patterson BK et al., “Detection of S1 spike protein in CD16+ monocytes up to 245
days in SARS-CoV-2-negative post-COVID-19 vaccine syndrome (PCVS) individuals,”
Hum Vaccin Immunother. 2025, 21, 1: 2494934. doi:
10.1080/21645515.2025.2494934 - Patterson BK et al., “Persistence of SARS CoV-2 S1 Protein in CD16+ Monocytes in
Post-Acute Sequelae of COVID-19 (PASC) up to 15 Months Post-Infection,” Front.
Immunol. 12 (Sec. Viral Immunology). doi: 10.3389/fimmu.2021.746021 - Pence B, “Recombinant SARS-CoV-2 Spike Protein Mediates Glycolytic and
Inflammatory Activation in Human Monocytes,” Innov Aging 2020, 4, sp. 1: 955. doi:
https://doi.org/10.1093/geroni/igaa057.3493 - Satta S et al., “An engineered nano-liposome-human ACE2 decoy neutralizes SARSCoV-2 Spike protein-induced inflammation in both murine and human
macrophages,” Theranostics 2022, 12, 6: 2639–2657. doi: 10.7150/thno.66831 - Schroeder JT and AP Bieneman, “The S1 Subunit of the SARS-CoV-2 Spike protein
activates human monocytes to produce cytokines linked to COVID-19: relevance to
galectin-3,” Front Immunol. 2022, 13: 831763. doi: 10.3389/fimmu.2022.831763 - Shirato K and Takako Kizaki, “SARS-CoV-2 Spike Protein S1 Subunit Induces Proinflammatory Responses via Toll-Like Receptor 4 Signaling in Murine and Human
Macrophages,” Heliyon 2021, 7, 2: e06187. doi: 10.1016/j.heliyon.2021.e06187 - Theobald SJ et al., “Long-lived macrophage reprogramming drives spike proteinmediated inflammasome activation in COVID-19,” EMBO Mol. Med. 2021, 13:
e14150. doi: https://doi.org/10.15252/emmm.202114150 - Vettori M et al., “E]ects of Di]erent Types of Recombinant SARS-CoV-2 Spike
Protein on Circulating Monocytes’ Structure,” Int. J. Mol. Sci. 2023, 24, 11: 9373.
doi: https://doi.org/10.3390/ijms24119373 - Youn YJ et al., “Nucleocapsid and spike proteins of SARS-CoV-2 drive neutrophil
extracellular trap formation,” Immune Netw. 2021, 21, 2: e16. doi:
https://doi.org/10.4110/in.2021.21.e16 - Zaki H and S Khan, “SARS-CoV-2 spike protein induces inflammatory molecules
through TLR2 in macrophages and monocytes,” J. Immunol. 2021, 206
(1_supplement): 62.07. doi: https://doi.org/10.4049/jimmunol.206.Supp.62.07
P. MAPK/NF-kB
- Arjsri P et al., “Hesperetin from root extract of Clerodendrum petasites S. Moore
inhibits SARS-CoV-2 spike protein S1 subunit-induced Nlrp3 inflammasome in A549
lung cells via modulation of the Akt/Mapk/Ap-1 pathway,” Int. J. Mol. Sci. 2022, 23,
18: 10346. doi: https://doi.org/10.3390/ijms231810346 - Bhattacharyya S and JK Tobacman, “SARS-CoV-2 spike protein-ACE2 interaction
increases carbohydrate sulfotransferases and reduces N-acetylgalactosamine-4-
sulfatase by p38 MAPK,” Signal Transduct Target Ther 2024, 9, 39. doi:
https://doi.org/10.1038/s41392-024-01741-3 - Forsyth CB et al., “The SARS-CoV-2 S1 spike protein promotes MAPK and NF-kB
activation in human lung cells and inflammatory cytokine production in human lung
and intestinal epithelial cells,” Microorganisms 2022, 10, 10: 1996.
doi: https://doi.org/10.3390/microorganisms10101996 - Johnson EL et al., “The S1 spike protein of SARS-CoV-2 upregulates the ERK/MAPK
signaling pathway in DC-SIGN-expressing THP-1 cells,” Cell Stress Chaperones
2024, 29, 2: 227-234. doi: https://doi.org/10.1016/j.cstres.2024.03.002 - Khan S et al., “SARS-CoV-2 Spike Protein Induces Inflammation via TLR2-Dependent
Activation of the NF-κB Pathway,” eLife 2021, 10: e68563. doi: 10.7554/elife.68563 - Kircheis R and O Planz, “Could a Lower Toll-like Receptor (TLR) and NF-κB Activation
Due to a Changed Charge Distribution in the Spike Protein Be the Reason for the
Lower Pathogenicity of Omicron?” Int. J. Mol. Sci. 2022, 23, 11: 5966. doi:
https://doi.org/10.3390/ijms23115966 - Kyriakopoulos AM et al., “Mitogen Activated Protein Kinase (MAPK) Activation, p53,
and Autophagy Inhibition Characterize the Severe Acute Respiratory Syndrome
Coronavirus 2 (SARS-CoV-2) Spike Protein Induced Neurotoxicity,” Cureus 2022, 14,
12: e32361. doi: 10.7759/cureus.32361 - Robles JP et al., “The Spike Protein of SARS-CoV-2 Induces Endothelial
Inflammation through Integrin α5β1 and NF-κB Signaling,” J. Biol. Chem. 2022, 298,
3: 101695. doi: https://doi.org/10.1016/j.jbc.2022.101695 - Sharma VK et al., “Nanocurcumin Potently Inhibits SARS-CoV-2 Spike ProteinInduced Cytokine Storm by Deactivation of MAPK/NF-κB Signaling in Epithelial
Cells,” ACS Appl. Bio Mater. 2022, 5, 2: 483–491. doi: 10.1021/acsabm.1c00874 - Bhattacharyya S and JK Tobacman, “SARS-CoV-2 spike protein-ACE2 interaction
increases carbohydrate sulfotransferases and reduces N-acetylgalactosamine-4-
sulfatase by p38 MAPK,” Signal Transduct Target Ther 2024, 9, 39. doi:
https://doi.org/10.1038/s41392-024-01741-3
Q. Mast cells
- Cao JB et al., “Mast cell degranulation-triggered by SARS-CoV-2 induces trachealbronchial epithelial inflammation and injury,” Virol. Sin. 2024, 39, 2: 309-318. doi:
https://doi.org/10.1016/j.virs.2024.03.001 - Fajloun Z et al., “SARS-CoV-2 or Vaccinal Spike Protein can Induce Mast Cell
Activation Syndrome (MCAS),” Infect Disord Drug Targets, 2025, 25, 1:
e300424229561. doi: 10.2174/0118715265319896240427045026 - Tsilioni S et al., “Recombinant SARS-CoV-2 Spike Protein Stimulates Secretion of
Chymase, Tryptase, and IL-1beta from Human Mast Cells, Augmented by IL-33,” Int.
J. Mol. Sci. 2023, 24, 11: 9487. doi: https://doi.org/10.3390/ijms24119487 - Wu ML et al., “Mast cell activation triggered by SARS-CoV-2 causes inflammation in
brain microvascular endothelial cells and microglia,” Front. Cell. Infect. Microbiol.,
2024, 14. doi: https://doi.org/10.3389/fcimb.2024.1358873
R. Microglia
- Alves V et al., “SARS-CoV-2 Spike protein alters microglial purinergic signaling
Front. Immunol. 2023, 14: 1158460. doi: 10.3389/fimmu.2023.1158460 - Chang MH et al., “SARS-CoV-2 Spike Protein 1 Causes Aggregation of α-Synuclein
via Microglia-Induced Inflammation and Production of Mitochondrial ROS: Potential
Therapeutic Applications of Metformin,” Biomedicines 2024, 12, 6: 1223. doi:
https://doi.org/10.3390/biomedicines12061223 - Clough E et al., “Mitochondrial Dynamics in SARS-COV2 Spike Protein Treated
Human Microglia: Implications for Neuro-COVID,” J. Neuroimmune Pharmacol.
2021, 16, 4: 770–784. doi: https://doi.org/10.1007/s11481-021-10015-6 - Frank MG et al., “SARS-CoV-2 Spike S1 Subunit Induces Neuroinflammatory,
Microglial and Behavioral Sickness Responses: Evidence of PAMP-Like Properties,”
Brain Behav. Immun. 2022, 100: 267277. doi: 10.1016/j.bbi.2021.12.007 - Kempuraj D et al., “Long COVID elevated MMP-9 and release from microglia by
SARS-CoV-2 Spike protein,” Transl. Neurosci. 2024, 15: 20220352. doi:
https://doi.org/10.1515/tnsci-2022-0352 - Mishra R and AC Banerjea, “SARS-CoV-2 Spike targets USP33-IRF9 axis via
exosomal miR-148a to activate human microglia,” Front. Immunol. 2021, 12: - doi: https://doi.org/10.3389/fimmu.2021.656700
- Olajide OA et al., “SARS-CoV-2 spike glycoprotein S1 induces neuroinflammation in
BV-2 microglia,”Mol. Neurobiol. 2022, 59: 445-458. doi: 10.1007/s12035-021-
02593-6 - Tsilioni I et al., “Nobiletin and Eriodictyol Suppress Release of IL-1β, CXCL8, IL-6,
and MMP-9 from LPS, SARS-CoV-2 Spike Protein, and Ochratoxin A-Stimulated
Human Microglia,” Int. J. Mol. Sci. 2025, 26, 2: 636. doi:
https://doi.org/10.3390/ijms26020636 - Tsilioni S et al., “Recombinant SARS-CoV-2 spike protein and its receptor binding
domain stimulate release of di]erent pro-inflammatory mediators via activation of
distinct receptors on human microglia cells,” Mol Neurobiol. 2023, 60, 11: 6704–14.
doi: 10.1007/s12035-023-03493-7 - Wu ML et al., “Mast cell activation triggered by SARS-CoV-2 causes inflammation in
brain microvascular endothelial cells and microglia,” Front. Cell. Infect. Microbiol.
2024, 14. doi: https://doi.org/10.3389/fcimb.2024.1358873
S. Microvascular
- Avolio E et al., “The SARS-CoV-2 Spike Protein Disrupts Human Cardiac Pericytes
Function through CD147 Receptor-Mediated Signalling: A Potential Non-infective
Mechanism of COVID-19 Microvascular Disease,” Clin. Sci. 2021, 135, 24: 2667– - doi: https://doi.org/10.1042/CS20210735
- Bhargavan B and GD Kanmogne, “SARS-CoV-2 spike proteins and cell–cell
communication inhibits TFPI and induces thrombogenic factors in human lung
microvascular endothelial cells and neutrophils: implications for COVID-19
coagulopathy pathogenesis,” Int. J. Mol. Sci. 2022, 23, 18: 10436. doi:
https://doi.org/10.3390/ijms231810436 - Kulkoviene G et al., “Di]erential Mitochondrial, Oxidative Stress and Inflammatory
Responses to SARS-CoV-2 Spike Protein Receptor Binding Domain in Human Lung
Microvascular, Coronary Artery Endothelial and Bronchial Epithelial Cells,” Int. J.
Mol. Sci. 2024, 25, 6: 3188. doi: https://doi.org/10.3390/ijms25063188 - Magro N et al., “Disruption of the blood-brain barrier is correlated with spike
endocytosis by ACE2 + endothelia in the CNS microvasculature in fatal COVID-19.
Scientific commentary on ‘Detection of blood-brain barrier disruption in brains of
patients with COVID-19, but no evidence of brain penetration by SARS-CoV-2’,” Acta
Neuropathol. 2024, 147, 1: 47. doi: https://doi.org/10.1007/s00401-023-02681-y - Panigrahi S et al., “SARS-CoV-2 Spike Protein Destabilizes Microvascular
Homeostasis,” Microbiol Spectr. 2021, 9, 3: e0073521. doi:
10.1128/Spectrum.00735-21 - Perico L et al., “SARS-CoV-2 Spike Protein 1 Activates Microvascular Endothelial
Cells and Complement System Leading to Platelet Aggregation,” Front.
Immunol. 2022, 13, 827146. doi: https://doi.org/10.3389/fimmu.2022.827146 - Wu ML et al., “Mast cell activation triggered by SARS-CoV-2 causes inflammation in
brain microvascular endothelial cells and microglia,” Front. Cell. Infect. Microbiol.
2024, 14. doi: https://doi.org/10.3389/fcimb.2024.1358873 - Zekri-Nechar K et al., “Spike Protein Subunits of SARS-CoV-2 Alter Mitochondrial
Metabolism in Human Pulmonary Microvascular Endothelial Cells: Involvement of
Factor Xa,” Dis. Markers 2022: 1118195. doi: https://doi.org/10.1155/2022/1118195
T. MIS-C, pediatric
- Chang A et al., “Recovery from antibody-mediated biliary ductopenia and
multiorgan inflammation after COVID-19 vaccination,” NPJ Vaccines 2024, 9, 75.
doi: https://doi.org/10.1038/s41541-024-00861-9 - Colmenero I et al., “SARS-CoV-2 endothelial infection causes COVID-19
chilblains: histopathological, immunohistochemical and ultrastructural study of
seven paediatric cases,” Br J Dermatol. 2020, 183: 729-737. doi:
https://doi.org/10.1111/bjd.19327/ - Dadonite B et al., “SARS-CoV-2 neutralizing antibody specificities di]er
dramatically between recently infected infants and immune-imprinted
individuals,” J. Virol. 2025, 99, 4. doi: https://doi.org/10.1128/jvi.00109-25 - De Sousa PMB et al., “Fatal Myocarditis following COVID-19 mRNA Immunization:
A Case Report and Di]erential Diagnosis Review,” Vaccines 2024, 12, 2: 194.
doi: https://doi.org/10.3390/vaccines12020194 - Mayordomo-Colunga J et al., “SARS-CoV-2 spike protein in intestinal cells of a
patient with coronavirus disease 2019 multisystem inflammatory syndrome,” J
Pediatr. 2022, 243: 214-18e215. doi: https://doi.org/10.1016/j.jpeds.2021.11.058 - Rivas MN et al., “COVID-19–associated multisystem inflammatory syndrome in
children (MIS-C): A novel disease that mimics toxic shock syndrome—the
superantigen hypothesis,” J Allergy Clin Immunol 2021, 147, 1: 57-59.
doi: 10.1016/j.jaci.2020.10.008 - Rivas MN et al., “Multisystem Inflammatory Syndrome in Children and Long
COVID: The SARS-CoV-2 Viral Superantigen Hypothesis,” Front Immunol. 2022,
13 (Sec. Molecular Innate Immunity). doi: 10.3389/fimmu.2022.941009 - Sacco K et al., “Immunopathological signatures in multisystem inflammatory
syndrome in children and pediatric COVID-19,” Nat. Med. 2022, 28: 1050-1062.
doi: https://doi.org/10.1038/s41591-022-01724-3 - Yonker LM et al., “Multisystem inflammatory syndrome in children is driven by
zonulin-dependent loss of gut mucosal barrier,” J Clin Invest. 2021, 131, 14:
e149633. doi: https://doi.org/10.1172/JCI149633
U. Mitochondria/metabolism
- Cao X et al., “The SARS-CoV-2 spike protein induces long-term transcriptional
perturbations of mitochondrial metabolic genes, causes cardiac fibrosis, and
reduces myocardial contractile in obese mice,” Mol. Metab. 2023, 74, 101756. doi:
https://doi.org/10.1016/j.molmet.2023.101756 - Chang MH et al., “SARS-CoV-2 Spike Protein 1 Causes Aggregation of α-Synuclein
via Microglia-Induced Inflammation and Production of Mitochondrial ROS: Potential
Therapeutic Applications of Metformin,” Biomedicines 2024, 12, 6: 1223. doi:
https://doi.org/10.3390/biomedicines12061223 - Clough E et al., “Mitochondrial Dynamics in SARS-COV2 Spike Protein Treated
Human Microglia: Implications for Neuro-COVID,” Journal of Neuroimmune
Pharmacology 2021, 16, 4: 770–784. doi: 10.1007/s11481-021-10015-6 - Huynh TV et al., “Spike Protein Impairs Mitochondrial Function in Human
Cardiomyocytes: Mechanisms Underlying Cardiac Injury in COVID19,” Cells 2023, 12, 877. doi: https://doi.org/10.3390/cells12060877 - Kulkoviene G et al., “Di]erential Mitochondrial, Oxidative Stress and Inflammatory
Responses to SARS-CoV-2 Spike Protein Receptor Binding Domain in Human Lung
Microvascular, Coronary Artery Endothelial and Bronchial Epithelial Cells,” Int. J.
Mol. Sci. 2024, 25, 6: 3188. doi: https://doi.org/10.3390/ijms25063188 - Mercado-Gómez M et al., “The spike of SARS-CoV-2 promotes metabolic rewiring in
hepatocytes,” Commun. Biol. 2022, 5, 827. doi: 10.1038/s42003-022-03789-9 - Nguyen V, “The Spike Protein of SARS-CoV-2 Impairs Lipid Metabolism and
Increases Susceptibility to Lipotoxicity: Implication for a Role of Nrf2,”
Cells 2022, 11, 12: 1916. doi: https://doi.org/10.3390/cells11121916 - Yeung-Luk BH et al., “SARS-CoV-2 infection alters mitochondrial and cytoskeletal
function in human respiratory epithelial cells mediated by expression of spike
protein,” mBio 2023, 14, 4: e00820-23. doi: https://doi.org/10.1128/mbio.00820-23 - Zekri-Nechar K et al., “Spike Protein Subunits of SARS-CoV-2 Alter Mitochondrial
Metabolism in Human Pulmonary Microvascular Endothelial Cells: Involvement of
Factor Xa,” Dis. Markers 2022, 1118195. doi: https://doi.org/10.1155/2022/1118195
V. Myocarditis/cardiac/cardiomyopathy
- Abdi A et al., “Biomed Interaction of SARS-CoV-2 with cardiomyocytes: Insight into
the underlying molecular mechanisms of cardiac injury and pharmacotherapy,”
Pharmacother. 2022, 146: 112518. doi: 10.1016/j.biopha.2021.112518 - Avolio E et al., “The SARS-CoV-2 Spike Protein Disrupts Human Cardiac Pericytes
Function through CD147 Receptor-Mediated Signalling: A Potential Non-infective
Mechanism of COVID-19 Microvascular Disease,” Clin. Sci. 2021, 135, 24: 2667– - doi: https://doi.org/10.1042/CS20210735
- Baumeier C et al., “Intramyocardial Inflammation after COVID-19 Vaccination: An
Endomyocardial Biopsy-Proven Case Series,” Int. J. Mol. Sci. 2022, 23: 6940. doi:
https://doi.org/10.3390/ijms23136940 - Bellavite P et al., “Immune response and molecular mechanisms of cardiovascular
adverse e]ects of spike proteins from SARS-coV-2 and mRNA vaccines,”
Biomedicines 2023, 11, 2: 451. doi: https://doi.org/10.3390/biomedicines11020451 - Boretti A. “PQQ Supplementation and SARS-CoV-2 Spike Protein-Induced Heart
Inflammation,” Nat. Prod. Commun. 2022, 17, 1934578×221080929. doi:
https://doi.org/10.1177/1934578X221080929 - Buoninfante A et al., “Myocarditis associated with COVID-19 vaccination,” npj
Vaccines 2024, 122. doi: https://doi.org/10.1038/s41541-024-00893-1 - Cao X et al., “The SARS-CoV-2 spike protein induces long-term transcriptional
perturbations of mitochondrial metabolic genes, causes cardiac fibrosis, and
reduces myocardial contractile in obese mice,” Mol. Metab. 2023, 74, 101756. doi:
https://doi.org/10.1016/j.molmet.2023.101756 - Clemens DJ et al., “SARS-CoV-2 spike protein-mediated cardiomyocyte fusion may
contribute to increased arrhythmic risk in COVID-19,” PLoS One 2023, 18, 3:
e0282151. doi: https://doi.org/10.1371/journal.pone.0282151 - De Sousa PMB et al., “Fatal Myocarditis following COVID-19 mRNA Immunization: A
Case Report and Di]erential Diagnosis Review,” Vaccines 2024, 12, 2: 194.
doi: https://doi.org/10.3390/vaccines12020194 - Forte E, “Circulating spike protein may contribute to myocarditis after COVID-19
vaccination,” Nat. Cardiovasc. Res. 2023, 2: 100. doi: 10.1038/s44161-023-00222-0 - Huang X et al., “Sars-Cov-2 Spike Protein-Induced Damage of hiPSC-Derived
Cardiomyocytes,” Adv. Biol. 2022, 6, 7: e2101327. doi: 10.1002/adbi.202101327 - Hulscher N et al., “Autopsy findings in cases of fatal COVID-19 vaccine-induced
myocarditis,” ESC Heart Failure 2024. doi: https://doi.org/10.1002/ehf2.14680 - Huynh TV et al., “Spike Protein Impairs Mitochondrial Function in Human
Cardiomyocytes: Mechanisms Underlying Cardiac Injury in COVID19,” Cells 2023, 12, 877. doi: https://doi.org/10.3390/cells12060877 - Huynh TV et al., “Spike Protein of SARS-CoV-2 Activates Cardiac Fibrogenesis
through NLRP3 Inflammasomes and NF-κB Signaling,” Cells 2024, 13, 16: 1331.
doi: https://doi.org/10.3390/cells13161331 - Imig JD, “SARS-CoV-2 spike protein causes cardiovascular disease independent of
viral infection,” Clin Sci (Lond) 2022, 136, 6: 431–434. doi: 10.1042/CS20220028 - Kato Y et al., “TRPC3-Nox2 Protein Complex Formation Increases the Risk of SARSCoV-2 Spike Protein-Induced Cardiomyocyte Dysfunction through ACE2
Upregulation,” Int. J. Mol. Sci. 2023, 24, 1: 102. doi: 10.3390/ijms24010102 - Kawano H et al., “Fulminant Myocarditis 24 Days after Coronavirus Disease
Messenger Ribonucleic Acid Vaccination,” Intern. Med. 2022, 61, 15: 2319-2325.
doi: https://doi.org/10.2169/internalmedicine.9800-22 - Li C. et al., “Intravenous Injection of Coronavirus Disease 2019 (COVID-19) MRNA
Vaccine Can Induce Acute Myopericarditis in Mouse Model,” Clin. Infect.
Dis. 2022, 74, 11: 1933-1950. doi: https://doi.org/10.1093/cid/ciab707 - Lin Z, “More than a key—the pathological roles of SARS-CoV-2 spike protein in
COVID-19 related cardiac injury,” Sports Med Health Sci 2023, 6, 3: 209-220.
doi: https://doi.org/10.1016/j.smhs.2023.03.004 - Rzymski P and Andrzej Fal, “To aspirate or not to aspirate? Considerations for the
COVID-19 vaccines,” Pharmacol. Rep 2022, 74: 1223–1227. doi:
https://doi.org/10.1007/s43440-022-00361-4 - Schreckenberg R et al., “Cardiac side e]ects of RNA-based SARS-CoV-2 vaccines:
Hidden cardiotoxic e]ects of mRNA-1273 and BNT162b2 on ventricular myocyte
function and structure,” Br. J. Pharmacol. 2024, 181, 3: 345-361. doi:
https://doi.org/10.1111/bph.16262 - Yonker LM et al., “Circulating Spike Protein Detected in Post–COVID-19 mRNA
Vaccine Myocarditis,” Circulation 2023, 147, 11. doi:
10.1161/CIRCULATIONAHA.122.061025
W. NLRP3
- Albornoz EA et al., “SARS-CoV-2 drives NLRP3 inflammasome activation in human
microglia through spike protein,” Mol. Psychiatr. 2023, 28: 2878–2893. doi:
https://doi.org/10.1038/s41380-022-01831-0 - Arjsri P et al., “Hesperetin from root extract of Clerodendrum petasites S. Moore
inhibits SARS-CoV-2 spike protein S1 subunit-induced Nlrp3 inflammasome in A549
lung cells via modulation of the Akt/Mapk/Ap-1 pathway,” Int. J. Mol. Sci. 2022, 23,
18: 10346. doi: https://doi.org/10.3390/ijms231810346 - Chittasupho C et al., “Inhibition of SARS-CoV-2-Induced NLRP3 InflammasomeMediated Lung Cell Inflammation by Triphala-Loaded Nanoparticle Targeting Spike
Glycoprotein S1,” Pharmaceutics 2024, 16, 6: 751. doi:
10.3390/pharmaceutics16060751 - Chittasupho C et al., “Targeting spike glycoprotein S1 mediated by NLRP3
inflammasome machinery and the cytokine releases in A549 lung epithelial cells by
nanocurcumin,” Pharmaceuticals (Basel) 2023, 16, 6: 862. doi:
10.3390/ph16060862 - Corpetti C et al., “Cannabidiol inhibits SARS-Cov-2 spike (S) protein-induced
cytotoxicity and inflammation through a PPARγ-dependent TLR4/NLRP3/Caspase-1
signaling suppression in Caco-2 cell line,” Phytother. Res. 2021, 35, 12: 6893– - doi: https://doi.org/10.1002/ptr.7302
- Del Re A et al., “Ultramicronized Palmitoylethanolamide Inhibits NLRP3
Inflammasome Expression and Pro-Inflammatory Response Activated by SARSCoV-2 Spike Protein in Cultured Murine Alveolar Macrophages,”
Metabolites 2021, 11, 9: 592. dsoi: https://doi.org/10.3390/metabo11090592 - Dissook S et al., “Luteolin-rich fraction from Perilla frutescens seed meal inhibits
spike glycoprotein S1 of SARS-CoV-2-induced NLRP3 inflammasome lung cell
inflammation via regulation of JAK1/STAT3 pathway: A potential anti-inflammatory
compound against inflammation-induced long-COVID,” Front. Med. 2023, 9: - doi: https://doi.org/10.3389/fmed.2022.1072056
- Huynh TV et al., “Spike Protein of SARS-CoV-2 Activates Cardiac Fibrogenesis
through NLRP3 Inflammasomes and NF-κB Signaling,” Cells 2024, 13, 16: 1331.
doi: https://doi.org/10.3390/cells13161331 - Jiang Q et al., “SARS-CoV-2 spike S1 protein induces microglial NLRP3-dependent
neuroinflammation and cognitive impairment in mice,” Exp. Neurol. 2025, 383: - doi: https://doi.org/10.1016/j.expneurol.2024.115020
- Kucia M et al. “An evidence that SARS-Cov-2/COVID-19 spike protein (SP) damages
hematopoietic stem/progenitor cells in the mechanism of pyroptosis in Nlrp3
inflammasome-dependent manner,” Leukemia 2021, 35: 3026-3029. doi:
https://doi.org/10.1038/s41375-021-01332-z - Ratajczak MZ et al., “SARS-CoV-2 Entry Receptor ACE2 Is Expressed on Very Small
CD45- Precursors of Hematopoietic and Endothelial Cells and in Response to Virus
Spike Protein Activates the Nlrp3 Inflammasome,” Stem Cell Rev Rep. 2021, 17, 1:
266-277. doi: https://doi.org/10.1007/s12015-020-10010-z - Semmarath W et al., “Cyanidin-3-O-glucoside and Peonidin-3-O-glucoside-Rich
Fraction of Black Rice Germ and Bran Suppresses Inflammatory Responses from
SARS-CoV-2 Spike Glycoprotein S1-Induction In Vitro in A549 Lung Cells and THP-1
Macrophages via Inhibition of the NLRP3 Inflammasome Pathway,” Nutrients 2022,
14, 13: 2738. doi: https://doi.org/10.3390/nu14132738 - Villacampa A et al., “SARS-CoV-2 S protein activates NLRP3 inflammasome and
deregulates coagulation factors in endothelial and immune cells,” Cell Commun.
Signal. 2024, 22, 38. doi: https://doi.org/10.1186/s12964-023-01397-6
X. Ocular, ophthalmic, conjunctival
- Golob-Schwarzl N et al., “SARS-CoV-2 spike protein functionally interacts with
primary human conjunctival epithelial cells to induce a pro-inflammatory
response,” Eye 2022, 36: 2353–5. doi: https://doi.org/10.1038/s41433-022-02066-7 - Grishma K and Das Sarma, “The Role of Coronavirus Spike Protein in Inducing Optic
Neuritis in Mice: Parallels to the SARS-CoV-2 Virus,” J Neuroophthalmol 2024, 44, 3:
319-329. doi: 10.1097/WNO.0000000000002234 - Zhu G et al., “SARS-CoV-2 spike protein-induced host inflammatory response
signature in human corneal epithelial cells,” Mol. Med. Rep. 2021, 24: 584. doi:
https://doi.org/10.3892/mmr.2021.12223
Y. Other cell signaling
- Caohuy H et al., “Inflammation in the COVID-19 airway is due to inhibition of CFTR
signaling by the SARS-CoV-2 spike protein,” Sci. Rep. 2024, 14: 16895. doi:
https://doi.org/10.1038/s41598-024-66473-4 - Choi JY et al., “SARS-CoV-2 spike S1 subunit protein-mediated increase of betasecretase 1 (BACE1) impairs human brain vessel cells,” Biochem. Biophys. Res.
Commun. 2022, 625, 20: 66-71. doi: https://doi.org/10.1016/j.bbrc.2022.07.113 - Chrestia JF et al., “A Functional Interaction Between Y674-R685 Region of the SARSCoV-2 Spike Protein and the Human α7 Nicotinic Receptor,” Mol. Neurobiol. 2022,
59: 676-690. doi: https://doi.org/10.1007/s12035-022-02947-8 - Corpetti C et al., “Cannabidiol inhibits SARS-Cov-2 spike (S) protein-induced
cytotoxicity and inflammation through a PPARγ-dependent TLR4/NLRP3/Caspase-1
signaling suppression in Caco-2 cell line,” Phytother. Res. 2021, 35, 12: 6893– - doi: https://doi.org/10.1002/ptr.7302
- Gracie NP et al., “Cellular signalling by SARS-CoV-2 spike protein,” Microbiology
Australia 2024, 45, 1: 13-17. doi: https://doi.org/10.1071/MA24005 - Hasan MZ et al., “SARS-CoV-2 infection induces adaptive NK cell responses by spike
protein-mediated induction of HLA-E expression,” Emerg Microbes Infect. 2024, 13: - doi: https://doi.org/10.1080/22221751.2024.2361019
- Li F et al., “SARS-CoV-2 Spike Promotes Inflammation and Apoptosis Through
Autophagy by ROS-Suppressed PI3K/AKT/mTOR Signaling,” Biochim Biophys Acta
BBA – Mol Basis Dis 2021, 1867: 166260. doi: 10.1016/j.bbadis.2021.166260 - Li K et al., “SARS-CoV-2 Spike protein promotes vWF secretion and thrombosis via
endothelial cytoskeleton-associated protein 4 (CKAP4),” Signal Transduct Targ Ther.
2022, 7, 332. doi: https://doi.org/10.1038/s41392-022-01183-9 - Moutal A et al., “SARS-CoV-2 Spike protein co-opts VEGF-A/Neuropilin-1 receptor
signaling to induce analgesia,” Pain 2020, 162, 1: 243–252. doi:
10.1097/j.pain.0000000000002097 - Munavilli GG et al., “COVID-19/SARS-CoV-2 virus spike protein-related delayed
inflammatory reaction to hyaluronic acid dermal fillers: a challenging clinical
conundrum in diagnosis and treatment,” Arch. Dermatol. Res. 2022, 314: 1-15. doi:
https://doi.org/10.1007/s00403-021-02190-6 - O’Brien BCV et al., “SARS-CoV-2 spike ectodomain targets α7 nicotinic
acetylcholine receptors,” J. Biol. Chem. 2023, 299, 5: 104707. doi:
10.1016/j.jbc.2023.104707 - Oliveira ASF et al., “A potential interaction between the SARS-CoV-2 spike protein
and nicotinic acetylcholine receptors,” Biophys. J. 2021, 120, 6: 983-993.
doi: 10.1016/j.bpj.2021.01.037 - Prieto-Villalobos J et al., “SARS-CoV-2 spike protein S1 activates Cx43
hemichannels and disturbs intracellular Ca2+ dynamics,” Biol Res. 2023, 56, 1: 56.
doi: https://doi.org/10.1186/s40659-023-00468-9 - Rotoli BM et al., “Endothelial cell activation by SARS-CoV-2 spike S1 protein: A
crosstalk between endothelium and innate immune cells,” Biomedicines 2021, 9, 9: - doi: https://doi.org/10.3390/biomedicines9091220
- Singh N and Anuradha Bharara Singh, “S2 Subunit of SARS-nCoV-2 Interacts with
Tumor Suppressor Protein p53 and BRCA: An in Silico Study,” Translational Oncology
2020, 13, 10: 100814. doi: https://doi.org/10.1016/j.tranon.2020.100814 - Singh RD, “The spike protein of sars-cov-2 induces heme oxygenase-1:
pathophysiologic implications,” Biochim Biophys Acta, Mol Basis Dis 2022, 1868, 3: - doi: https://doi.org/10.1016/j.bbadis.2021.166322
- Solis O et al., “The SARS-CoV-2 spike protein binds and modulates estrogen
receptors,” Sci. Adv. 2022, 8, 48: eadd4150. doi: 10.1126/sciadv.add4150 - Suzuki YJ et al., “SARS-CoV-2 spike protein-mediated cell signaling in lung vascular
cells,” Vascul. Pharmacol. 2021, 137: 106823. doi: 10.1016/j.vph.2020.106823 - Suzuki YJ and SG Gychka, “SARS-CoV-2 Spike Protein Elicits Cell Signaling in Human
Host Cells: Implications for Possible Consequences of COVID-19 Vaccines,”
Vaccines 2021, 9, 1: 36. doi: https://doi.org/10.3390/vaccines9010036 - Tillman TS et al., “SARS-CoV-2 Spike Protein Downregulates Cell Surface
alpha7nAChR through a Helical Motif in the Spike Neck,” ACS Chem.
Neurosci. 2023, 14, 4: 689–698. doi: 10.1021/acschemneuro.2c00610
Z. PASC, post COVID, long COVID
- Bellucci M et al., “Post-SARS-CoV-2 infection and post-vaccine-related neurological
complications share clinical features and the same positivity to anti-ACE2
antibodies,” Front. Immunol. 2024, 15 (Sec. Multiple Sclerosis and
Neuroimmunology). doi: https://doi.org/10.3389/fimmu.2024.1398028 - Craddock V et al., “Persistent circulation of soluble and extracellular vesicle-linked
Spike protein in individuals with postacute sequelae of COVID-19,” J Med. Virol. 2023,
95, 2: e28568. doi: https://doi.org/10.1002/jmv.28568 - De Melo BP et al., “SARS-CoV-2 Spike Protein and Long COVID—Part 1: Impact of
Spike Protein in Pathophysiological Mechanisms of Long COVID Syndrome,”
Viruses 2025, 17, 5: 617. doi: https://doi.org/10.3390/v17050617 - Dissook S et al., “Luteolin-rich fraction from Perilla frutescens seed meal inhibits
spike glycoprotein S1 of SARS-CoV-2-induced NLRP3 inflammasome lung cell
inflammation via regulation of JAK1/STAT3 pathway: A potential anti-inflammatory
compound against inflammation-induced long-COVID,” Front. Med. 2023, 9: - doi: https://doi.org/10.3389/fmed.2022.1072056
- Frank MG et al., “Exploring the immunogenic properties of SARS-CoV-2 structural
proteins: PAMP:TLR signaling in the mediation of the neuroinflammatory and
neurologic sequelae of COVID-19,” Brain Behav Immun 2023, 111. doi:
https://doi.org/10.1016/j.bbi.2023.04.009 - Frank MG et al., “SARS-CoV-2 S1 subunit produces a protracted priming of the
neuroinflammatory, physiological, and behavioral responses to a remote immune
challenge: A role for corticosteroids,” Brain Behav. Immun. 2024, 121: 87-103. doi:
https://doi.org/10.1016/j.bbi.2024.07.034 - Fraser ME at al., “SARS-CoV-2 Spike Protein and Viral RNA Persist in the Lung of
Patients With Post-COVID Lung Disease (abstract),” Am J Respir Crit Care Med 2024,
209: A4193. doi: 10.1164/ajrccm-conference.2024.209.1_MeetingAbstracts.A4193 - Goh D et al., “Case report: Persistence of residual antigen and RNA of the SARS-CoV2 virus in tissues of two patients with long COVID,” Front. Immunol. 2022, 13 (Sec.
Viral Immunology). doi: https://doi.org/10.3389/fimmu.2022.939989 - Halma MTJ et al., “Exploring autophagy in treating SARS-CoV-2 spike protein-related
pathology,” Endocrinol Metab (EnM) 2024, 14: 100163. doi:
https://doi.org/10.1016/j.endmts.2024.100163 - Halma MTJ et al., “Strategies for the Management of Spike Protein-Related
Pathology,” Microorganisms 2023, 11, 5: 1308. doi:
10.3390/microorganisms11051308 - Hano S et al., “A case of persistent, confluent maculopapular erythema following a
COVID-19 mRNA vaccination is possibly associated with the intralesional spike
protein expressed by vascular endothelial cells and eccrine glands in the deep
dermis,” J Dermatol 2023, 50, 9: 1208-1212. doi: 10.1111/1346-8138.16816 - Kempuraj D et al., “Long COVID elevated MMP-9 and release from microglia by SARSCoV-2 Spike protein,” Transl. Neurosci. 2024, 15: 20220352. doi:
https://doi.org/10.1515/tnsci-2022-0352 - Patterson BK et al., “Persistence of SARS CoV-2 S1 Protein in CD16+ Monocytes in
Post-Acute Sequelae of COVID-19 (PASC) up to 15 Months Post-Infection,” Front.
Immunol. 12 (Sec. Viral Immunology). doi: 10.3389/fimmu.2021.746021 - Peluso MJ et al., “Plasma-based antigen persistence in the post-acute phase of
COVID-19,” Lancet 2024, 24, 6: E345-E347. doi: 10.1016/S1473-3099(24)00211-1 - Rong Z et al., “Persistence of spike protein at the skull-meninges-brain axis may
contribute to the neurological sequelae of COVID-19,” Cell Host Microbe 2024, 26:
S1931-3128(24)00438-4. doi: 10.1016/j.chom.2024.11.007 - Scholkmann F and CA May, “COVID-19, post-acute COVID-19 syndrome (PACS, ‘long
COVID’) and post-COVID-19 vaccination syndrome (PCVS, ‘post-COVIDvacsyndrome’): Similarities and di]erences,” Pathol Res Pract. 2023, 246: 154497. doi:
https://doi.org/10.1016/j.prp.2023.154497 - Schultheiss C et al., “Liquid biomarkers of macrophage dysregulation and circulating
spike protein illustrate the biological heterogeneity in patients with post-acute
sequelae of COVID-19,” J Med Virol 2023, 95, 1: e28364. doi: 10.1002/jmv.28364 - Swank Z, et al. “Persistent Circulating Severe Acute Respiratory Syndrome
Coronavirus 2 Spike Is Associated With Post-acute Coronavirus Disease 2019
Sequelae,” Clin. Infect. Dis. 2023, 76, 3: e487–e490. doi: 10.1093/cid/ciac722 - Theoharides TC, “Could SARS-CoV-2 Spike Protein Be Responsible for Long-COVID
Syndrome?” Mol. Neurobiol. 2022, 59, 3: 1850–1861. doi: 10.1007/s12035-021-
02696-0 - Visvabharathy L et al., “Case report: Treatment of long COVID with a SARS-CoV-2
antiviral and IL-6 blockade in a patient with rheumatoid arthritis and SARS-CoV-2
antigen persistence,” Front. Med. 2022, 9 (Sec. Infectious Diseases – Surveillance).
doi: https://doi.org/10.3389/fmed.2022.1003103 - Yamamoto M et al., “Persistent varicella zoster virus infection following mRNA
COVID-19 vaccination was associated with the presence of encoded spike protein in
the lesion,” J. Cutan Immunol. Allergy. 2022:1–6. doi: 10.1002/cia2.12278 - Zollner A et al., “Postacute COVID-19 is Characterized by Gut Viral Antigen
Persistence in Inflammatory Bowel Diseases,” Gastroenterology 2022, 163, 2: 495-
506.e8. doi: https://doi.org/10.1053/j.gastro.2022.04.037
AA. Pregnancy
- Erdogan MA, “Prenatal SARS-CoV-2 Spike Protein Exposure Induces Autism-Like
Neurobehavioral Changes in Male Neonatal Rats,” J Neuroimmune Pharmacol.
2023, 18, 4: 573-591. doi: 10.1007/s11481-023-10089-4 - Guo X et al., “Regulation of proinflammatory molecules and tissue factor by SARSCoV-2 spike protein in human placental cells: implications for SARS-CoV-2
pathogenesis in pregnant women,” Front. Immunol. 2022, 13: 876555–876555. doi:
https://doi.org/10.3389/fimmu.2022.876555 - Kammala AK et al., “In vitro mRNA-S maternal vaccination induced altered immune
regulation at the maternal-fetal interface,” Am. J. Reprod. Immunol. 2024, 91, 5:
e13861. doi: https://doi.org/10.1111/aji.13861 - Karrow NA et al., “Maternal COVID-19 Vaccination and Its Potential Impact on Fetal
and Neonatal Development,” Vaccines 2021, 9: 1351. doi:
10.3390/vaccines9111351 - Parcial ALN et al., “SARS-CoV-2 Is Persistent in Placenta and Causes Macroscopic,
Histopathological, and Ultrastructural Changes,” Viruses 2022, 14, 9: 1885.
doi: https://doi.org/10.3390/v14091885 - Wu H et al., “Molecular evidence suggesting the persistence of residual SARS-CoV-2
and immune responses in the placentas of pregnant patients recovered from
COVID-19,” Cell Prolif. 2021, 54, 9: e13091. doi: https://doi.org/10.1111/cpr.13091 - Zurlow M et al., “The anti-SARS-CoV-2 BNT162b2 vaccine suppresses mithramycininduced erythroid di]erentiation and expression of embryo-fetal globin genes in
human erythroleukemia K562 cells.” Exp Cell Res 2023, 433, 2: 113853. doi:
https://doi.org/10.1016/j.yexcr.2023.113853
BB. Pulmonary, respiratory
- Bhargavan B and GD Kanmogne, “SARS-CoV-2 spike proteins and cell–cell
communication inhibits TFPI and induces thrombogenic factors in human lung
microvascular endothelial cells and neutrophils: implications for COVID-19
coagulopathy pathogenesis,” Int. J. Mol. Sci. 2022, 23, 18: 10436. doi:
https://doi.org/10.3390/ijms231810436 - Biancatelli RMLC et al., “The SARS-CoV-2 spike protein subunit S1 induces COVID19-like acute lung injury in Kappa18-hACE2 transgenic mice and barrier dysfunction
in human endothelial cells,” Am. J. Physiol. Lung Cell. Mol. Physiol. 2021, 321: L477–
L484. doi: https://doi.org/10.1152/ajplung.00223.2021 - Cao JB et al., “Mast cell degranulation-triggered by SARS-CoV-2 induces trachealbronchial epithelial inflammation and injury,” Virol. Sin. 2024, 39, 2: 309-318. doi:
https://doi.org/10.1016/j.virs.2024.03.001 - Cao X et al., “Spike protein of SARS-CoV-2 activates macrophages and contributes
to induction of acute lung inflammation in male mice,” FASEB J. 2021, 35, e21801.
doi: https://doi.org/10.1096/fj.202002742RR - Caohuy H et al., “Inflammation in the COVID-19 airway is due to inhibition of CFTR
signaling by the SARS-CoV-2 spike protein,” Sci. Rep. 2024, 14: 16895. doi:
https://doi.org/10.1038/s41598-024-66473-4 - Chittasupho C et al., “Inhibition of SARS-CoV-2-Induced NLRP3 InflammasomeMediated Lung Cell Inflammation by Triphala-Loaded Nanoparticle Targeting Spike
Glycoprotein S1,” Pharmaceutics 2024, 16, 6: 751. doi:
10.3390/pharmaceutics16060751 - Chittasupho C et al., “Targeting spike glycoprotein S1 mediated by NLRP3
inflammasome machinery and the cytokine releases in A549 lung epithelial cells by
nanocurcumin,” Pharmaceuticals (Basel) 2023, 16, 6: 862. doi:
10.3390/ph16060862 - DeVries A et al., “SARS-CoV-2 Spike Protein is Su]icient to Induce Enhanced Proinflammatory Transcriptional Responses in Nasal Epithelial Cells from Atopic
Asthmatics,” J Allergy Clin Immunol 2025, 155, 2: AB85. doi:
10.1016/j.jaci.2024.12.271 - Del Re A et al., “Intranasal delivery of PEA-producing Lactobacillus paracasei
F19 alleviates SARS-CoV-2 spike protein-induced lung injury in mice,” Transl. Med.
Commun. 2024, 9, 9. doi: https://doi.org/10.1186/s41231-024-00167-x - Forsyth CB et al., “The SARS-CoV-2 S1 spike protein promotes MAPK and NF-kB
activation in human lung cells and inflammatory cytokine production in human lung
and intestinal epithelial cells,” Microorganisms 2022, 10, 10: 1996.
doi: https://doi.org/10.3390/microorganisms10101996 - Fraser ME at al., “SARS-CoV-2 Spike Protein and Viral RNA Persist in the Lung of
Patients With Post-COVID Lung Disease (abstract),” Am J Respir Crit Care Med 2024,
209: A4193. doi: 10.1164/ajrccm-conference.2024.209.1_MeetingAbstracts.A4193 - Greenberger JS et al., “SARS-CoV-2 Spike Protein Induces Oxidative Stress and
Senescence in Mouse and Human Lung,” In Vivo 2024, 38, 4: 1546-1556. doi:
https://doi.org/10.21873/invivo.13605 - Jana S et al., “Cell-free hemoglobin does not attenuate the e]ects of SARS-CoV-2
spike protein S1 subunit in pulmonary endothelial cells,” Int. J. Mol. Sci. 2021, 22,
16: 9041. doi: https://doi.org/10.3390/ijms22169041 - Kulkoviene G et al., “Di]erential Mitochondrial, Oxidative Stress and Inflammatory
Responses to SARS-CoV-2 Spike Protein Receptor Binding Domain in Human Lung
Microvascular, Coronary Artery Endothelial and Bronchial Epithelial Cells,” Int. J.
Mol. Sci. 2024, 25, 6: 3188. doi: https://doi.org/10.3390/ijms25063188 - Liang S et al., “SARS-CoV-2 spike protein induces IL-18-mediated cardiopulmonary
inflammation via reduced mitophagy,” Signal Transduct Target Ther 2023, 8, 103. doi:
https://doi.org/10.1038/s41392-023-01368-w - Liu T et al., “RS-5645 attenuates inflammatory cytokine storm induced by SARSCoV-2 spike protein and LPS by modulating pulmonary microbiota,” Int J Biol Sci.
2021, 17, 13: 3305–3319. doi: 10.7150/ijbs.63329 - Liu Y et al., “The recombinant spike S1 protein induces injury and inflammation in
co-cultures of human alveolar epithelial cells and macrophages,” PLoS ONE 2025,
20, 2: e0318881. doi: https://doi.org/10.1371/journal.pone.0318881 - Palestra F et al. “SARS-CoV-2 Spike Protein Activates Human Lung
Macrophages,” Int. J. Mol. Sci. 2023, 24, 3: 3036. doi: 10.3390/ijms24033036 - Park C et al., “Murine alveolar Macrophages Rapidly Accumulate intranasally
Administered SARS-CoV-2 Spike Protein leading to neutrophil Recruitment and
Damage,” Elife 2024, 12: RP86764. doi: https://doi.org/10.7554/eLife.86764.3 - Puthia MTL et al., “Experimental model of pulmonary inflammation induced by
SARS-CoV-2 spike protein and endotoxin,” ACS Pharmacol Transl Sci. 2022, 5,
3: 141–8. doi: https://doi.org/10.1021/acsptsci.1c00219 - Rahman M et al., “Di]erential E]ect of SARS-CoV-2 Spike Glycoprotein 1 on Human
Bronchial and Alveolar Lung Mucosa Models: Implications for Pathogenicity,”
Viruses 2021, 13, 12: 2537. doi: https://doi.org/10.3390/v13122537 - Roy A et al., “Ultradiluted Eupatorium perfoliatum Prevents and Alleviates SARSCoV-2 Spike Protein-Induced Lung Pathogenesis by Regulating Inflammatory
Response and Apoptosis,” Diseases 2025, 13, 2: 36.
doi: 10.3390/diseases13020036 - Ruben ML et al., “The SARS-CoV-2 spike protein subunit S1 induces COVID-19-like
acute lung injury in Κ18-hACE2 transgenic mice and barrier dysfunction in human
endothelial cells,” Am J Physiol Lung Cell Mol Physiol. 2021, 321, 2: L477-L484.
doi: https://doi.org/10.1152/ajplung.00223.2021 - Segura-Villalobos D et al., “Jacareubin inhibits TLR4-induced lung inflammatory
response caused by the RBD domain of SARS-CoV-2 Spike protein,” Pharmacol.
Rep. 2022, 74: 1315–1325. doi: https://doi.org/10.1007/s43440-022-00398-5 - Semmarath W et al., “Cyanidin-3-O-glucoside and Peonidin-3-O-glucoside-Rich
Fraction of Black Rice Germ and Bran Suppresses Inflammatory Responses from
SARS-CoV-2 Spike Glycoprotein S1-Induction In Vitro in A549 Lung Cells and THP-1
Macrophages via Inhibition of the NLRP3 Inflammasome Pathway,” Nutrients 2022,
14, 13: 2738. doi: https://doi.org/10.3390/nu14132738 - Sirsendu J et al., “Cell-Free Hemoglobin Does Not Attenuate the E]ects of SARSCoV-2 Spike Protein S1 Subunit in Pulmonary Endothelial Cells,” Int. J. Mol. Sci.
2021, 22, 16: 9041. doi: https://doi.org/10.3390/ijms22169041 - Solopov et al., “Alcohol increases lung angiotensin-converting enzyme 2 expression
and exacerbates severe acute respiratory syndrome coronavirus 2 spike protein
subunit 1-induced acute lung injury in K18-hACE2 transgenic mice,” Am J Pathol
2022, 192, 7: 990-1000. doi: 10.1016/j.ajpath.2022.03.012 - Sui Y et al., “SARS-CoV-2 Spike Protein Suppresses ACE2 and Type I Interferon
Expression in Primary Cells From Macaque Lung Bronchoalveolar Lavage,” Front.
Immunol. 2021, 12. doi: https://doi.org/10.3389/fimmu.2021.658428 - Sung PS et al., “CLEC5A and TLR2 Are Critical in SARS-CoV-2-Induced NET
Formation and Lung Inflammation,” J. Biomed. Sci. 2022, 29, 52. doi:
https://doi.org/10.1186/s12929-022-00832-z - Suzuki YJ et al., “SARS-CoV-2 spike protein-mediated cell signaling in lung vascular
cells,” Vascul. Pharmacol. 2021, 137: 106823. doi: 10.1016/j.vph.2020.106823 - Yang K et al., “SARS-CoV-2 spike protein receptor-binding domain perturbates
intracellular calcium homeostasis and impairs pulmonary vascular endothelial
cells,” Signal Transduct Target Ther. 2023, 8, 276. doi: 10.1038/s41392-023-01556-8 - Yeung-Luk BH et al., “SARS-CoV-2 infection alters mitochondrial and cytoskeletal
function in human respiratory epithelial cells mediated by expression of spike
protein,” mBio 2023, 14, 4: e00820-23. doi: https://doi.org/10.1128/mbio.00820-23 - Zekri-Nechar K et al., “Spike Protein Subunits of SARS-CoV-2 Alter Mitochondrial
Metabolism in Human Pulmonary Microvascular Endothelial Cells: Involvement of
Factor Xa,” Dis. Markers 2022, 1118195. doi: https://doi.org/10.1155/2022/1118195
CC. Renin-Angiotensin-Aldosterone System
- Burnett FN et al., “SARS-CoV-2 Spike Protein Intensifies Cerebrovascular
Complications in Diabetic hACE2 Mice through RAAS and TLR Signaling Activation,”
Int. J. Mol. Sci. 2023, 24, 22: 16394. doi: https://doi.org/10.3390/ijms242216394 - Lehmann KJ, “SARS-CoV-2-Spike Interactions with the Renin-AngiotensinAldosterone System – Consequences of Adverse Reactions of Vaccination,” J Biol
Today’s World 2023, 12/4: 001-013. doi: https://doi.org/10.31219/osf.io/27g5h - Matsuzawa Y et al., “Impact of Renin–Angiotensin–Aldosterone System Inhibitors on
COVID-19,” Hypertens. Res. 2022, 45, 7: 1147–1153. doi: 10.1038/s41440-022-
00922-3
DD. Senescence/aging
- Duarte C, “Age-dependent e]ects of the recombinant spike protein/SARS-CoV-2 on
the M-CSF- and IL-34-di]erentiated macrophages in vitro,” Biochem. Biophys. Res.
Commun. 2021, 546: 97–102. doi: https://doi.org/10.1016/j.bbrc.2021.01.104 - Greenberger JS et al., “SARS-CoV-2 Spike Protein Induces Oxidative Stress and
Senescence in Mouse and Human Lung,” In Vivo 2024, 38, 4: 1546-1556. doi:
https://doi.org/10.21873/invivo.13605 - Meyer K et al., “SARS-CoV-2 Spike Protein Induces Paracrine Senescence and
Leukocyte Adhesion in Endothelial Cells,” J. Virol. 2021, 95, e0079421. doi:
https://doi.org/10.1128/jvi.00794-21
EE. Stem cells
- Balzanelli MG et al., “The Role of SARS-CoV-2 Spike Protein in Long-term Damage of
Tissues and Organs, the Underestimated Role of Retrotransposons and Stem Cells,
a Working Hypothesis,” Endocr Metab Immune Disord Drug Targets 2025, 25, 2: 85- - doi: 10.2174/0118715303283480240227113401
- Kucia M et al. “An evidence that SARS-Cov-2/COVID-19 spike protein (SP) damages
hematopoietic stem/progenitor cells in the mechanism of pyroptosis in Nlrp3
inflammasome-dependent manner,” Leukemia 2021, 35: 3026-3029. doi:
https://doi.org/10.1038/s41375-021-01332-z - Ropa J et al., “Human Hematopoietic Stem, Progenitor, and Immune Cells Respond
Ex Vivo to SARS-CoV-2 Spike Protein,” Stem Cell Rev Rep. 2021, 17, 1: 253-265. doi:
https://doi.org/10.1007/s12015-020-10056-z
FF. Syncytia/cell fusion
- Braga L et al., “Drugs that inhibit TMEM16 proteins block SARS-CoV-2 spike-induced
syncytia,” Nature 2021, 594: 88–93. doi: 10.1038/s41586-021-03491-6 - Cattin-Ortolá J et al., “Sequences in the cytoplasmic tail of SARS-CoV-2 Spike
facilitate expression at the cell surface and syncytia formation,” Nat Commun 2021,
12, 1: 5333. doi: https://doi.org/10.1038/s41467-021-25589-1 - Clemens DJ et al., “SARS-CoV-2 spike protein-mediated cardiomyocyte fusion may
contribute to increased arrhythmic risk in COVID-19,” PLoS One 2023, 18, 3:
e0282151. doi: https://doi.org/10.1371/journal.pone.0282151 - Lazebnik Y, “Cell fusion as a link between the SARS-CoV-2 spike protein, COVID-19
complications, and vaccine side e]ects,” Oncotarget 2021, 12, 25: 2476-2488. doi:
https://doi.org/10.18632/oncotarget.28088 - Liu X et al., “SARS-CoV-2 spike protein-induced cell fusion activates the cGASSTING pathway and the interferon response,” Sci Signal. 2022, 15, 729: eabg8744.
doi: 10.1126/scisignal.abg8744 - Martinez-Marmol R et al., “SARS-CoV-2 infection and viral fusogens cause neuronal
and glial fusion that compromises neuronal activity,” Sci. Adv. 2023, 9, 23. doi:
10.1126/sciadv.adg2248 - Rajah MM et al., “SARS-CoV-2 Alpha, Beta, and Delta variants display enhanced
spike-mediated syncytia formation,” EMBO J. 2021, 40: e108944. doi:
https://doi.org/10.15252/embj.2021108944 - Shirato K and Takako Kizaki, “SARS-CoV-2 Spike Protein S1 Subunit Induces Proinflammatory Responses via Toll-Like Receptor 4 Signaling in Murine and Human
Macrophages,” Heliyon 2021, 7, 2: e06187. doi: 10.1016/j.heliyon.2021.e06187 - Theuerkauf SA et al., “Quantitative assays reveal cell fusion at minimal levels of
SARS-CoV-2 spike protein and fusion from without,” iScience 2021, 24, 3: 102170.
doi: https://doi.org/10.1016/j.isci.2021.102170 - Zhang Z et al., “SARS-CoV-2 spike protein dictates syncytium-mediated lymphocyte
elimination,” Cell Death Diber. 2021, 28: 2765–2777. doi: 10.1038/s41418-021-
00782-3
GG. Therapeutics
- Almehdi AM et al., “SARS-CoV-2 Spike Protein: Pathogenesis, Vaccines, and
Potential Therapies,” Infection 2021, 49, 5: 855–876. doi: 10.1007/s15010-021-
01677-8 - Boretti A, “PQQ Supplementation and SARS-CoV-2 Spike Protein-Induced Heart
Inflammation,” Nat. Prod. Commun. 2022, 17, 1934578×221080929. doi:
https://doi.org/10.1177/1934578X221080929 - Boschi C et al., “SARS-CoV-2 Spike Protein Induces Hemagglutination: Implications
for COVID-19 Morbidities and Therapeutics and for Vaccine Adverse E]ects,” Int. J.
Biol. Macromol. 2022, 23, 24: 15480. doi: https://doi.org/10.3390/ijms232415480 - Braga L et al., “Drugs that inhibit TMEM16 proteins block SARS-CoV-2 spike-induced
syncytia,” Nature 2021, 594: 88–93. doi: 10.1038/s41586-021-03491-6 - Chang MH et al., “SARS-CoV-2 Spike Protein 1 Causes Aggregation of α-Synuclein
via Microglia-Induced Inflammation and Production of Mitochondrial ROS: Potential
Therapeutic Applications of Metformin,” Biomedicines 2024, 12, 6: 1223. doi:
https://doi.org/10.3390/biomedicines12061223 - Chittasupho C et al., “Inhibition of SARS-CoV-2-Induced NLRP3 InflammasomeMediated Lung Cell Inflammation by Triphala-Loaded Nanoparticle Targeting Spike
Glycoprotein S1,” Pharmaceutics 2024, 16, 6: 751. doi:
10.3390/pharmaceutics16060751 - Chittasupho C et al., “Targeting spike glycoprotein S1 mediated by NLRP3
inflammasome machinery and the cytokine releases in A549 lung epithelial cells by
nanocurcumin,” Pharmaceuticals (Basel) 2023, 16, 6: 862. doi:
10.3390/ph16060862 - Corpetti C et al., “Cannabidiol inhibits SARS-Cov-2 spike (S) protein-induced
cytotoxicity and inflammation through a PPARγ-dependent TLR4/NLRP3/Caspase-1
signaling suppression in Caco-2 cell line,” Phytother. Res. 2021, 35, 12: 6893- - doi: https://doi.org/10.1002/ptr.7302
- Cory TJ et al., “Metformin Suppresses Monocyte Immunometabolic Activation by
SARS-CoV-2 Spike Protein Subunit 1,” Front. Immunol. 2021, 12 (Sec. Cytokines and
Soluble Mediators in Immunity): 733921. doi: 10.3389/fimmu.2021.733921 - Del Re A et al., “Intranasal delivery of PEA-producing Lactobacillus paracasei
F19 alleviates SARS-CoV-2 spike protein-induced lung injury in mice,” Transl. Med.
Commun. 2024, 9, 9. doi: https://doi.org/10.1186/s41231-024-00167-x - Del Re A et al., “Ultramicronized Palmitoylethanolamide Inhibits NLRP3
Inflammasome Expression and Pro-Inflammatory Response Activated by SARSCoV-2 Spike Protein in Cultured Murine Alveolar Macrophages,” Metabolites 2021,
11, 9: 592. doi: https://doi.org/10.3390/metabo11090592 - Dhandapani S et al., “Lipid-encapsulated gold nanoparticles: an advanced strategy
for attenuating the inflammatory response in SARS-CoV-2 infection,” J.
Nanobiotechnology 2025, 23, 15. doi: https://doi.org/10.1186/s12951-024-03064-5 - Ferrer MD et al., “Nitrite Attenuates the In Vitro Inflammatory Response of Immune
Cells to the SARS-CoV-2 S Protein without Interfering in the Antioxidant Enzyme
Activation,” Int. J. Mol. Sci. 2024, 25, 5: 3001. https://doi.org/10.3390/ijms25053001 - Frank MG et al., “SARS-CoV-2 S1 subunit produces a protracted priming of the
neuroinflammatory, physiological, and behavioral responses to a remote immune
challenge: A role for corticosteroids,” Brain Behav. Immun. 2024, 121: 87-103. doi:
https://doi.org/10.1016/j.bbi.2024.07.034 - Frühbeck G et al., “FNDC4 and FNDC5 reduce SARS-CoV-2 entry points and spike
glycoprotein S1-induced pyroptosis, apoptosis, and necroptosis in human
adipocytes,” Cell Mol Immunol. 2021, 18, 10: 2457–9. doi: 10.1038/s41423-021-
00762-0 - Gasparello J et al., “Aged Garlic Extract (AGE) and Its Constituent S-Allyl-Cysteine
(SAC) Inhibit the Expression of Pro-Inflammatory Genes Induced in Bronchial
Epithelial IB3-1 Cells by Exposure to the SARS-CoV-2 Spike Protein and the
BNT162b2 Vaccine,” Molecules 2024, 29, 24: 5938. doi:
10.3390/molecules29245938 - Gasparello J et al., “In vitro induction of interleukin-8 by SARS-CoV-2 Spike protein is
inhibited in bronchial epithelial IB3-1 cells by a miR-93-5p agomiR,” Int.
Immunopharmacol. 2021, 101: 108201. doi: 10.1016/j.intimp.2021.108201 - Gasparello J et al., “Sulforaphane inhibits the expression of interleukin-6 and
interleukin-8 induced in bronchial epithelial IB3-1 cells by exposure to the SARSCoV-2 Spike protein,” Phytomedicine 2021, 87: 153583. doi:
https://doi.org/10.1016/j.phymed.2021.153583 - Halma MTJ et al., “Exploring autophagy in treating SARS-CoV-2 spike protein-related
pathology,” Endocrinol Metab (EnM) 2024, 14: 100163. doi:
10.1016/j.endmts.2024.100163 - Halma MTJ et al., “Strategies for the Management of Spike Protein-Related
Pathology,” Microorganisms 2023, 11, 5: 1308. doi:
10.3390/microorganisms11051308 - Jana S et al., “Cell-free hemoglobin does not attenuate the e]ects of SARS-CoV-2
spike protein S1 subunit in pulmonary endothelial cells,” Int. J. Mol. Sci. 2021, 22,
16: 9041. doi: https://doi.org/10.3390/ijms22169041 - Jugler C et al., “SARS-CoV-2 Spike Protein-Induced Interleukin 6 Signaling Is Blocked
by a Plant-Produced Anti-Interleukin 6 Receptor Monoclonal Antibody,”
Vaccines 2021, 9, 11: 1365. doi: https://doi.org/10.3390/vaccines9111365 - Ken W et al., “Low dose radiation therapy attenuates ACE2 depression and
inflammatory cytokines induction by COVID-19 viral spike protein in human
bronchial epithelial cells,” Int J Radiat Biol. 2022, 98, 10:1532-1541. doi:
https://doi.org/10.1080/09553002.2022.2055806 - Kumar N et al., “SARS-CoV-2 spike protein S1-mediated endothelial injury and proinflammatory state Is amplified by dihydrotestosterone and prevented by
mineralocorticoid antagonism,” Viruses 2021, 13, 11: 2209. doi: 10.3390/v13112209 - Liu T et al., “RS-5645 attenuates inflammatory cytokine storm induced by SARSCoV-2 spike protein and LPS by modulating pulmonary microbiota,” Int J Biol Sci.
2021, 17, 13: 3305–3319. doi: 10.7150/ijbs.63329 - Loh D, “The potential of melatonin in the prevention and attenuation of oxidative
hemolysis and myocardial injury from cd147 SARS-CoV-2 spike protein receptor
binding,” Melatonin Research 2020, 3, 3: 380-416. doi: 10.32794/mr11250069 - Loh JT et al., “Dok3 restrains neutrophil production of calprotectin during TLR4
sensing of SARS-CoV-2 spike protein,” Front. Immunol. 2022, 13 (Sec. Molecular
Innate Immunity). doi: https://doi.org/10.3389/fimmu.2022.996637 - Marrone L et al., “Tirofiban prevents the e]ects of SARS-CoV-2 spike protein on
macrophage activation and endothelial cell death,” Heliyon 2024, 10, 15: e35341.
doi: 10.1016/j.heliyon.2024.e35341 - Norris B et al., “Evaluation of Glutathione in Spike Protein of SARS-CoV-2 Induced
Immunothrombosis and Cytokine Dysregulation,” Antioxidants 2024, 13, 3: 271.
doi: https://doi.org/10.3390/antiox13030271 - Oka N et al., “SARS-CoV-2 S1 protein causes brain inflammation by reducing
intracerebral acetylcholine production,” iScience 2023, 26, 6: 106954. doi:
10.1016/j.isci.2023.106954 - Olajide OA et al., “Induction of Exaggerated Cytokine Production in Human
Peripheral Blood Mononuclear Cells by a Recombinant SARS-CoV-2 Spike
Glycoprotein S1 and Its Inhibition by Dexamethasone,” Inflammation 2021, 44:
1865–1877. doi: https://doi.org/10.1007/s10753-021-01464-5 - Petrosino S and N Matende, “Elimination/Neutralization of COVID-19 VaccineProduced Spike Protein: Scoping Review,” Mathews Journal of Nutrition & Dietetics
2024, 7, 2. doi: https://doi.org/10.30654/MJND.10034 - Roy A et al., “Ultradiluted Eupatorium perfoliatum Prevents and Alleviates SARSCoV-2 Spike Protein-Induced Lung Pathogenesis by Regulating Inflammatory
Response and Apoptosis,” Diseases 2025, 13, 2: 36.
doi: 10.3390/diseases13020036 - Satta S et al., “An engineered nano-liposome-human ACE2 decoy neutralizes SARSCoV-2 Spike protein-induced inflammation in both murine and human
macrophages,” Theranostics 2022, 12, 6: 2639–2657. doi: 10.7150/thno.66831 - Segura-Villalobos D et al., “Jacareubin inhibits TLR4-induced lung inflammatory
response caused by the RBD domain of SARS-CoV-2 Spike protein,” Pharmacol.
Rep. 2022, 74: 1315–1325. doi: https://doi.org/10.1007/s43440-022-00398-5 - Semmarath W et al., “Cyanidin-3-O-glucoside and Peonidin-3-O-glucoside-Rich
Fraction of Black Rice Germ and Bran Suppresses Inflammatory Responses from
SARS-CoV-2 Spike Glycoprotein S1-Induction In Vitro in A549 Lung Cells and THP-1
Macrophages via Inhibition of the NLRP3 Inflammasome Pathway,” Nutrients 2022,
14, 13: 2738. doi: https://doi.org/10.3390/nu14132738 - Solopov PA et al., “KVX-053, a protein tyrosine phosphatase 4A3 inhibitor,
ameliorates SARS-CoV-2 spike protein subunit 1–induced acute lung injury in mice,”
J. Pharmacol. Exp. Ther. 2025, 392, 3: 100022. doi: 10.1124/jpet.124.002154 - Suprewicz L et al., “Recombinant human plasma gelsolin reverses increased
permeability of the blood-brain barrier induced by the spike protein of the SARSCoV-2 virus,” J Neuroinflamm. 2022, 19, 1: 282. doi: 10.1186/s12974-022-02642-4 - Tsilioni I et al., “Nobiletin and Eriodictyol Suppress Release of IL-1β, CXCL8, IL-6,
and MMP-9 from LPS, SARS-CoV-2 Spike Protein, and Ochratoxin A-Stimulated
Human Microglia,” Int. J. Mol. Sci. 2025, 26, 2: 636. doi: 10.3390/ijms26020636 - Vargas-Castro R et al., “Calcitriol prevents SARS-CoV spike-induced inflammation
in human trophoblasts through downregulating ACE2 and TMPRSS2 expression,” J
Steroid Biochem Mol Biol 2025, 245: 106625. doi: 10.1016/j.jsbmb.2024.106625 - Visvabharathy L et al., “Case report: Treatment of long COVID with a SARS-CoV-2
antiviral and IL-6 blockade in a patient with rheumatoid arthritis and SARS-CoV-2
antigen persistence,” Front. Med. 2022, 9 (Sec. Infectious Diseases – Surveillance).
doi: https://doi.org/10.3389/fmed.2022.1003103 - Yonker LM et al., “Multisystem inflammatory syndrome in children is driven by
zonulin-dependent loss of gut mucosal barrier,” J Clin Invest. 2021, 131, 14:
e149633. doi: https://doi.org/10.1172/JCI149633 - Youn JY et al., “Therapeutic application of estrogen for COVID-19: Attenuation of
SARS-CoV-2 spike protein and IL-6 stimulated, ACE2-dependent NOX2 activation,
ROS production and MCP-1 upregulation in endothelial cells,” Redox Biol. 2021, 46: - doi: https://doi.org/10.1016/j.redox.2021.102099
- Yu J et al., “Direct activation of the alternative complement pathway by SARS-CoV-2
spike proteins is blocked by factor D inhibition,” Blood 2020, 136, 18: 2080–2089.
doi: https://doi.org/10.1182/blood.2020008248
HH. Toll-like receptors (TLRs)
- Aboudounya MM and RJ Heads, “COVID-19 and Toll-Like Receptor 4 (TLR4): SARSCoV-2 May Bind and Activate TLR4 to Increase ACE2 Expression, Facilitating Entry
and Causing Hyperinflammation,” Mediators Inflamm. 2021: 8874339. doi:
https://doi.org/10.1155/2021/8874339 - Burnett FN et al., “SARS-CoV-2 Spike Protein Intensifies Cerebrovascular
Complications in Diabetic hACE2 Mice through RAAS and TLR Signaling Activation,”
Int. J. Mol. Sci. 2023, 24, 22: 16394. doi: https://doi.org/10.3390/ijms242216394 - Carnevale R et al., “Toll-Like Receptor 4-Dependent Platelet-Related Thrombosis in
SARS-CoV-2 Infection,” Circ. Res. 2023, 132, 3: 290– 305. doi:
https://doi.org/10.1161/CIRCRESAHA.122.321541 - Corpetti C et al., “Cannabidiol inhibits SARS-Cov-2 spike (S) protein-induced
cytotoxicity and inflammation through a PPARγ-dependent TLR4/NLRP3/Caspase-1
signaling suppression in Caco-2 cell line,” Phytother. Res. 2021, 35, 12: 6893– - doi: https://doi.org/10.1002/ptr.7302
- Fontes-Dantas FL, “SARS-CoV-2 Spike Protein Induces TLR4-Mediated Long- Term
Cognitive Dysfunction Recapitulating Post-COVID-19 Syndrome in Mice,” Cell
Reports 2023, 42, 3: 112189. doi: https://doi.org/10.1016/j.celrep.2023.112189 - Khan S et al., “SARS-CoV-2 Spike Protein Induces Inflammation via TLR2-Dependent
Activation of the NF-κB Pathway,” eLife 2021, 10: e68563. doi: 10.7554/elife.68563 - Kim MJ et al., “The SARS-CoV-2 spike protein induces lung cancer migration and
invasion in a TLR2-dependent manner,” Cancer Commun (London) 2023, 44, 2: 273– - doi: https://doi.org/10.1002/cac2.12485
- Kircheis R and O Planz, “Could a Lower Toll-like Receptor (TLR) and NF-κB Activation
Due to a Changed Charge Distribution in the Spike Protein Be the Reason for the
Lower Pathogenicity of Omicron?” Int. J. Mol. Sci. 2022, 23, 11: 5966. doi:
https://doi.org/10.3390/ijms23115966 - Loh JT et al., “Dok3 restrains neutrophil production of calprotectin during TLR4
sensing of SARS-CoV-2 spike protein,” Front. Immunol. 2022, 13 (Sec. Molecular
Innate Immunity). doi: https://doi.org/10.3389/fimmu.2022.996637 - Segura-Villalobos D et al., “Jacareubin inhibits TLR4-induced lung inflammatory
response caused by the RBD domain of SARS-CoV-2 Spike protein,” Pharmacol.
Rep. 2022, 74: 1315–1325. doi: https://doi.org/10.1007/s43440-022-00398-5 - Sirsendu J et al., “Cell-Free Hemoglobin Does Not Attenuate the E]ects of SARSCoV-2 Spike Protein S1 Subunit in Pulmonary Endothelial Cells,” Int. J. Mol. Sci.,
2021, 22, 16: 9041. doi: https://doi.org/10.3390/ijms22169041 - Sung PS et al., “CLEC5A and TLR2 Are Critical in SARS-CoV-2-Induced NET
Formation and Lung Inflammation,” J. Biomed. Sci. 2022, 29, 52. doi:
https://doi.org/10.1186/s12929-022-00832-z - Zaki H and S Khan, “SARS-CoV-2 spike protein induces inflammatory molecules
through TLR2 in macrophages and monocytes,” J. Immunol. 2021, 206
(1_supplement): 62.07. doi: https://doi.org/10.4049/jimmunol.206.Supp.62.07 - Zaki H and S Khan, “TLR2 senses spike protein of SARS-CoV-2 to trigger
inflammation,” J. Immunol. 2022, 208 (1_Supplement): 125.30. doi:
https://doi.org/10.4049/jimmunol.208.Supp.125.30 - Zhao Y et al., “SARS-CoV-2 spike protein interacts with and activates TLR4,” Cell
Res. 2021, 31: 818–820. doi: https://doi.org/10.1038/s41422-021-00495-9
Colabore por favor con nosotros para que podamos incluir mas información y llegar a más personas: contribución en mercado pago o paypal por única vez, Muchas Gracias!
Via PAYPAL: Euros o dólares click aqui
ARGENTINA 10.000$ar https://mpago.la/1srgnEY
5.000$ar https://mpago.la/1qzSyt9
1.000$ar https://mpago.la/1Q1NEKM
Solicite nuestro CBU contactenos
Descargar libros desde https://cienciaysaludnatural.com/recursos