martes , 15 abril 2025

Estudios en 184 millones de personas demuestran que las inyecciones Covid no son seguras

Las «vacunas» ARNm contra Covid no son seguras de acuerdo a estudios realizados que incluyen 184 millones de personas. Los 4 estudios que así lo demuestran son:

FAKSOVA ET AL (n=99 millones):

  • ➊ Miocarditis (+510% después de la inyección de ARNm)
  • ➋ Encefalomielitis diseminada aguda (+278% después de la inyección de ARNm)
  • ➌ Trombosis del seno venoso cerebral (+223% después de la inyección del vector viral)
  • ➍ Síndrome de Guillain-Barré (+149% tras la inyección del vector viral)

RAHELEH ET AL (n= 85 millones):

  • ➊ Ataque cardíaco (+286% después de la segunda dosis)
  • ➋ Accidente cerebrovascular (+240% después de la primera dosis)
  • ➌ Enfermedad de la arteria coronaria (+244% después de la segunda dosis)
  • ➍ Arritmia cardíaca (+199% después de la primera dosis)

HULSCHER ET AL (n= 325 autopsias):

Se demostró un vínculo causal entre las inyecciones contra la COVID-19 y la muerte a través de múltiples sistemas orgánicos.

ALLESSANDRIA ET AL (n=290.727):

Los sujetos vacunados con 2 dosis perdieron el 37% de la esperanza de vida en comparación con la población no vacunada durante el seguimiento.

La retirada inmediata del mercado de las inyecciones de ARNm de COVID-19 es esencial para evitar más pérdidas de vidas entre millones personas que aún están inyectando.

La proteína pico o spike que produce la inyección contra Covid es tóxica

La siguiente sección recopila más de 300 estudios científicos revisados ​​por pares que confirman que la proteína pico o spike es altamente patógena por sí misma; la mayoría de los estudios citados aquí utilizaron proteínas de espiga recombinantes o proteínas de espiga en vectores pseudovirales y produjeron efectos patológicos independientes de la maquinaria viral del SARS-CoV2.

La segunda sección (II. Categorías) organiza la investigación en categorías generales que incluyen tejidos y sistemas orgánicos afectados, mecanismos y evidencia de patología clínica. Debido a que estas áreas se superponen, muchos artículos aparecen más de una vez en la segunda sección.

CATEGORIAS


A. General/Overview (32)
B. ACE2 (19)
C. Amyloid, prion-like properties (12)
D. Autoimmune (7)
E. Blood pressure/hypertension (2)
F. CD147 (13)
G. Cell membrane permeability, barrier dysfunction (13)
H. Cerebral, cerebrovascular, neurologic, blood-brain barrier, cognitive (24)
I. Clinical pathology (22)
J. Clotting, platelets, hemoglobin (30)
K. Cytokines, chemokines, interferon, interleukins (27)
L. Endothelial (25)
M. Gastrointestinal (8)
N. Immune dysfunction (5)
O. Macrophages , monocytes, neutrophils (28)
P. MAPK/NF-kB (10)
Q. Mast cells (3)
R. Microglia (6)
S. Microvascular (8)
T. MIS-C, pediatric (7)
U. Mitochondria / metabolism (9)
V. Myocarditis, cardiac, cardiomyopathy (22)
W. NLRP3 (15)
X. Ocular, ophthalmic, conjunctival (3)
Y. Other cell signaling (16)
Z. PASC, post COVID, long COVID (20)
AA. Pregnancy, fetal, placenta (7)
BB. Pulmonary, respiratory (28)
CC. Renin – Angiotensin-Aldosterone System (3)
DD. Senescence/aging (3)
EE. Stem cells (3)
FF. Syncytia / cell fusion (10)
GG. Therapeutics (37)
HH. Toll-like receptors (TLRs) (15)


A. General/Overview

  1. Acevedo-Whitehouse K and R Bruno, “Potential health risks of mRNA-based vaccine therapy: A
    hypothesis,” Med. Hypotheses 2023, 171: 111015. doi: https://doi.org/10.1016/j.mehy.2023.111015
  2. Almehdi AM et al., “SARS-CoV-2 Spike Protein: Pathogenesis, Vaccines, and Potential Therapies,”
    Infection 2021, 49, 5: 855–876. doi: https://doi.org/10.1007/s15010-021-01677-8
  3. Baldari CT et al., “Emerging Roles of SARS-CoV-2 Spike-ACE2 in Immune Evasion and Pathogenesis,”
    Trends Immunol. 2023, 44, 6. doi: https://doi.org/10.1016/j.it.2023.04.001
  4. Bansal S et al., “Cutting Edge: Circulating Exosomes with COVID Spike Protein Are Induced by
    BNT162b2 (Pfizer-BioNTech) Vaccination prior to Development of Antibodies: A Novel Mechanism for
    Immune Activation by mRNA Vaccines,” J. Immunol. 2021, 207, 10: 2405–2410. doi:
    https://doi.org/10.4049/jimmunol.2100637
  5. Bellucci M et al., “Post-SARS-CoV-2 infection and post-vaccine-related neurological complications
    share clinical features and the same positivity to anti-ACE2 antibodies,” Front. Immunol. 2024, 15
    (Sec. Multiple Sclerosis and Neuroimmunology). doi: https://doi.org/10.3389/fimmu.2024.1398028
  6. Boros LG et al., “Long-lasting, biochemically modified mRNA, and its frameshifted recombinant
    spike proteins in human tissues and circulation after COVID-19 vaccination,” Pharmacol Res
    Perspect 2024, 12, 3: e1218. doi: https://doi.org/10.1002/prp2.1218
  7. Brady M et al., “Spike protein multiorgan tropism suppressed by antibodies targeting SARS-CoV-2,”
    Comm. Biol. 2021, 4, 1318. doi: https://doi.org/10.1038/s42003-021-02856-x
  8. Cosentino M and Franca Marino, “Understanding the Pharmacology of COVID- 19 mRNA Vaccines:
    Playing Dice with the Spike?” Int. J. Mol. Sci. 2022, 23, 18: 10881. doi:
    https://doi.org/10.3390/ijms231810881
  9. Fertig TE et al., “Beyond the injection site: identifying the cellular targets of mRNA vaccines,” J Cell
    Ident 2024, 3, 1. doi: 10.47570/joci.2024.004
  10. Fertig TE et al., “Vaccine mRNA Can Be Detected in Blood at 15 Days Post
    Vaccination,” Biomedicines 2022, 10, 7: 1538. doi: https://doi.org/10.3390/biomedicines10071538
  11. Gussow AB et al., “Genomic Determinants of Pathogenicity in SARS-CoV-2 and Other Human
    Coronaviruses,” PNAS 117, 2020, 26: 15193–15199. doi: https://doi.org/10.1073/pnas.2008176117
  12. Halma MTJ et al., “Strategies for the Management of Spike Protein-Related Pathology,”
    Microorganisms 2023, 11, 5: 1308, doi: https://doi.org/10.3390/microorganisms11051308
  13. Kent SJ et al., “Blood Distribution of SARS-CoV-2 Lipid Nanoparticle mRNA Vaccine in Humans,” ACS
    Nano 2024, 18, 39: 27077-27089. doi: https://doi.org/10.1021/acsnano.4c11652
  14. Kowarz E et al., “Vaccine-induced COVID-19 mimicry syndrome,” eLife 2022, 11: e74974.
    doi: https://doi.org/10.7554/eLife.74974
  15. Lehmann KJ, “Impact of SARS-CoV-2 Spikes on Safety of Spike-Based COVID-19 Vaccinations,”
    Immunome Res. 2024, 20, 2: 1000267. doi: 10.35248/1745-7580.24.20.267
  16. Lehmann KJ, “Suspected Causes of the Specific Intolerance Profile of Spike-Based Covid-19
    Vaccines,” Med. Res. Arch 2024, 12, 9. doi: 10.18103/mra.v12i9.5704
  17. Lesgard JF et al., “Toxicity of SARS-CoV-2 Spike Protein from the Virus and Produced from COVID-19
    mRNA or Adenoviral DNA Vaccines,” Arch Microbiol Immun 2023, 7, 3: 121- 138. doi:
    10.26502/ami.936500110
  18. Letarov AV et al., “Free SARS-CoV-2 Spike Protein S1 Particles May Play a Role in the Pathogenesis of
    COVID-19 Infection,” Biochemistry (Moscow) 2021, 86, 257–261. doi:
    https://doi.org/10.1134/S0006297921030032
  19. Nuovo JG et al., “Endothelial Cell Damage Is the Central Part of COVID-19 and a Mouse Model
    Induced by Injection of the S1 Subunit of the Spike Protein,” Ann. Diagn. Pathol. 2021, 51, 151682.
    doi: https://doi.org/10.1016/j.anndiagpath.2020.151682
  20. Pallas RM, “Innate and adaptative immune mechanisms of COVID-19 vaccines. Serious adverse
    events associated with SARS-CoV-2 vaccination: A systematic review,” Vacunas (English ed.) 2024,
    25, 2: 285.e1-285.e94. doi: https://doi.org/10.1016/j.vacune.2024.05.002
  21. Parry PL et al., “‘Spikeopathy’: COVID-19 Spike Protein Is Pathogenic, from Both Virus and Vaccine
    mRNA,” Biomedicine 2023, 11, 8: 2287. doi: https://doi.org/10.3390/biomedicines11082287
  22. Pateev I et al., “Biodistribution of RNA Vaccines and of Their Products: Evidence from Human and
    Animal Studies,” Biomedicines 2024, 12, 1: 59. doi: https://doi.org/10.3390/biomedicines12010059
  23. Peluso MJ et al., “Plasma-based antigen persistence in the post-acute phase of COVID-19,” Lancet
    2024, 24, 6: E345-E347. doi: 10.1016/S1473-3099(24)00211-1
  24. Rzymski P and Andrzej Fal, “To aspirate or not to aspirate? Considerations for the COVID-19
    vaccines,” Pharmacol. Rep 2022, 74: 1223–1227. doi: https://doi.org/10.1007/s43440-022-00361-4
  25. Saadi F et al., “Spike glycoprotein is central to coronavirus pathogenesis-parallel between m-CoV
    and SARS-CoV-2,” Ann Neurosci. 2021, 28 (3-4): 201–218. doi:
    https://doi.org/10.1177/09727531211023755
  26. Sacco K et al., “Immunopathological signatures in multisystem inflammatory syndrome in children
    and pediatric COVID-19,” Nat. Med. 2022, 28: 1050-1062. doi: https://doi.org/10.1038/s41591-022-
    01724-3
  27. Scholkmann F and CA May, “COVID-19, post-acute COVID-19 syndrome (PACS, ‘long COVID’) and
    post-COVID-19 vaccination syndrome (PCVS, ‘post-COVIDvac-syndrome’): Similarities and
    diberences,” Pathol Res Pract. 2023, 246: 154497. doi: https://doi.org/10.1016/j.prp.2023.154497
  28. Swank Z, et al. “Persistent Circulating Severe Acute Respiratory Syndrome Coronavirus 2 Spike Is
    Associated With Post-acute Coronavirus Disease 2019 Sequelae,” Clin. Infect. Dis 2023, 76, 3: e487–
    e490. doi: https://doi.org/10.1093/cid/ciac722
  29. Theoharides TC, “Could SARS-CoV-2 Spike Protein Be Responsible for Long-COVID Syndrome?” Mol.
    Neurobiol. 2022, 59, 3: 1850–1861, doi: https://doi.org/10.1007/s12035-021-02696-0
  30. Theoharides TC and P. Conti, “Be Aware of SARS-CoV-2 Spike Protein: There Is More Than Meets the
    Eye,” J Biol Reg Homeostat Agents 2021, 35, 3: 833–838 doi: 10.23812/THEO_EDIT_3_21
  31. Trougakos IP et al., “Adverse Ebects of COVID-19 mRNA Vaccines: The Spike Hypothesis,” Trends Mol
    Med. 2022, 28, 7: 542–554. doi: 10.1016/j.molmed.2022.04.007
  32. Tyrkalska SD et al., “Diberential proinflammatory activities of spike proteins of SARS-CoV-2 variants
    of concern,” Sci. Adv. 2022, 8, 37: eabo0732. doi: 10.1126/sciadv.abo0732

B. ACE2

  1. Aboudounya MM and RJ Heads, “COVID-19 and Toll-Like Receptor 4 (TLR4): SARS-CoV-2 May Bind
    and Activate TLR4 to Increase ACE2 Expression, Facilitating Entry and Causing Hyperinflammation,”
    Mediators Inflamm. 2021, 8874339. doi: https://doi.org/10.1155/2021/8874339
  2. Aksenova AY et al., “The increased amyloidogenicity of Spike RBD and pH-dependent binding to
    ACE2 may contribute to the transmissibility and pathogenic properties of SARS-CoV-2 omicron as
    suggested by in silico study,” Int J Mol Sci. 2022, 23, 21: 13502. doi:
    https://doi.org/10.3390/ijms232113502
  3. Angeli F et al., “COVID-19, vaccines and deficiency of ACE2 and other angiotensinases. Closing the
    loop on the ‘Spike ebect’,” Eur J. Intern. Med. 2022, 103: 23–28. doi: 10.1016/j.ejim.2022.06.015
  4. Baldari CT et al., “Emerging Roles of SARS-CoV-2 Spike-ACE2 in Immune Evasion and Pathogenesis,”
    Trends Immunol. 2023, 44, 6. doi: https://doi.org/10.1016/j.it.2023.04.001
  5. Bellucci M et al., “Post-SARS-CoV-2 infection and post-vaccine-related neurological complications
    share clinical features and the same positivity to anti-ACE2 antibodies,” Front. Immunol. 2024, 15
    (Sec. Multiple Sclerosis and Neuroimmunology). doi: https://doi.org/10.3389/fimmu.2024.1398028
  6. Devaux CA and L. Camoin-Jau, “Molecular mimicry of the viral spike in the SARS-CoV-2 vaccine
    possibly triggers transient dysregulation of ACE2, leading to vascular and coagulation dysfunction
    similar to SARS-CoV-2 infection,” Viruses 2023, 15, 5: 1045. doi: https://doi.org/10.3390/v15051045
  7. Gao X et al., “Spike-Mediated ACE2 Down-Regulation Was Involved in the Pathogenesis of SARS-CoV-
    2 Infection,” J. Infect. 2022, 85, 4: 418–427. doi: 10.1016/j.jinf.2022.06.030
  8. Kato Y et al., “TRPC3-Nox2 Protein Complex Formation Increases the Risk of SARS-CoV-2 Spike
    Protein-Induced Cardiomyocyte Dysfunction through ACE2 Upregulation,” Int. J. Mol. Sci. 2023, 24, 1:
  9. doi: https://doi.org/10.3390/ijms24010102
  10. Ken W et al., “Low dose radiation therapy attenuates ACE2 depression and inflammatory cytokines
    induction by COVID-19 viral spike protein in human bronchial epithelial cells,” Int J Radiat Biol. 2022,
    98, 10: 1532-1541. doi: https://doi.org/10.1080/09553002.2022.2055806
  11. Lei Y et al., “SARS-CoV-2 Spike Protein Impairs Endothelial Function via Downregulation of ACE 2,”
    Circulation Research 2021, 128, 9: 1323–1326. doi:
    https://doi.org/10.1161/CIRCRESAHA.121.318902
  12. Lu J and PD Sun, “High abinity binding of SARS-CoV-2 spike protein enhances ACE2
    carboxypeptidase activity,” J. Biol. Chem 2020, 295, 52: p18579-18588. doi:
    10.1074/jbc.RA120.015303
  13. Maeda Y et al., “Diberential Ability of Spike Protein of SARS-CoV-2 Variants to Downregulate ACE2,”
    Int. J. Mol. Sci. 2024, 25, 2: 1353. doi: https://doi.org/10.3390/ijms25021353
  14. Magro N et al., “Disruption of the blood-brain barrier is correlated with spike endocytosis by ACE2 +
    endothelia in the CNS microvasculature in fatal COVID-19. Scientific commentary on ‘Detection of
    blood-brain barrier disruption in brains of patients with COVID-19, but no evidence of brain
    penetration by SARS-CoV-2’,” Acta Neuropathol. 2024, 147, 1: 47. doi:
    https://doi.org/10.1007/s00401-023-02681-y
  15. Satta S et al., “An engineered nano-liposome-human ACE2 decoy neutralizes SARS-CoV-2 Spike
    protein-induced inflammation in both murine and human macrophages,” Theranostics 2022, 12, 6:
    2639–2657. doi: 10.7150/thno.66831
  16. Sui Y et al., “SARS-CoV-2 Spike Protein Suppresses ACE2 and Type I Interferon Expression in Primary
    Cells From Macaque Lung Bronchoalveolar Lavage,” Front. Immunol. 2021, 12. doi:
    https://doi.org/10.3389/fimmu.2021.658428
  17. Tetz G and Victor Tetz, “Prion-Like Domains in Spike Protein of SARS-CoV-2 Diber across Its Variants
    and Enable Changes in Abinity to ACE2,” Microorganisms 2025, 10, 2: 280. doi:
    https://doi.org/10.3390/microorganisms10020280
  18. Vargas-Castro R et al., “Calcitriol prevents SARS-CoV spike-induced inflammation in human
    trophoblasts through downregulating ACE2 and TMPRSS2 expression,” J Steroid Biochem Mol
    Biol 2025, 245: 106625. doi: https://doi.org/10.1016/j.jsbmb.2024.106625
  19. Youn JY et al., “Therapeutic application of estrogen for COVID-19: Attenuation of SARS-CoV-2 spike
    protein and IL-6 stimulated, ACE2-dependent NOX2 activation, ROS production and MCP-1
    upregulation in endothelial cells,” Redox Biol. 2021, 46: 102099. doi:
    https://doi.org/10.1016/j.redox.2021.102099
  20. Zhang S et al., “SARS-CoV-2 Binds Platelet ACE2 to Enhance Thrombosis in COVID-19,” J. Hematol.
    Oncol. 2020, 13, 120: 120. doi: https://doi.org/10.1186/s13045-020-00954-7
    C. Amyloid, prion-like properties

C. Amyloid, prion-like properties

  1. Aksenova AY et al., “The increased amyloidogenicity of Spike RBD and pH-dependent binding to
    ACE2 may contribute to the transmissibility and pathogenic properties of SARS-CoV-2 omicron as
    suggested by in silico study,” Int. J. Mol. Sci. 2022, 23, 21: 13502. doi:
    https://doi.org/10.3390/ijms232113502
  2. Cao S et al., “Spike Protein Fragments Promote Alzheimer’s Amyloidogenesis,” ACS Appl. Mater.
    Interfaces 2023, 15, 34: 40317-40329. doi: https://doi.org/10.1021/acsami.3c09815
  3. Freeborn J, “Misfolded Spike Protein Could Explain Complicated COVID-19 Symptoms,” Medical
    News Today, May 26, 2022, https://www.medicalnewstoday.com/articles/misfolded-spike-proteincould- explain-complicated-covid-19-symptoms
  4. Idrees D and Vijay Kumar, “SARS-CoV-2 Spike Protein Interactions with Amyloidogenic Proteins:
    Potential Clues to Neurodegeneration,” Biochemical and Biophysical Research Communications
    2021, 554 : 94–98. doi: https://doi.org/10.1016/j.bbrc.2021.03.100
  5. Ma G et al., “SARS-CoV-2 Spike protein S2 subunit modulates γ-secretase and enhances amyloid-β
    production in COVID-19 neuropathy,” Cell Discov 2022, 8, 99. doi: https://doi.org/10.1038/s41421-
    022-00458-3
  6. Nahalka J, “1-L Transcription of SARS-CoV-2 Spike Protein S1 Subunit,” Int. J. Mol. Sci. 2024, 25, 8: doi: https://doi.org/10.3390/ijms25084440
  7. Nyström S, “Amyloidogenesis of SARS-CoV-2 Spike Protein,” J. Am. Chem. Soc. 2022, 144, 8945– doi: https://doi.org/10.1021/jacs.2c03925
  8. Petrlova J et al., “SARS-CoV-2 spike protein aggregation is triggered by bacterial lipopolysaccharide,”
    FEBS Lett. 2022, 596:2566–2575. doi: https://doi.org/10.1002/1873-3468.14490
  9. Petruk G et al., “SARS-CoV-2 spike protein binds to bacterial lipopolysaccharide and boosts
    proinflammatory activity,” J. Mol. Cell Biol. 2020, 12: 916-932. doi:
    https://doi.org/10.1093/jmcb/mjaa067
  10. Rong Z et al., “Persistence of spike protein at the skull-meninges-brain axis may contribute to the
    neurological sequelae of COVID-19,” Cell Host Microbe 2024, 26: S1931-3128(24)00438-4. doi:
    10.1016/j.chom.2024.11.007
  11. Tetz G and Victor Tetz, “Prion-Like Domains in Spike Protein of SARS-CoV-2 Diber across Its Variants
    and Enable Changes in Abinity to ACE2,” Microorganisms 2022, 10, 2: 280, doi:
    https://doi.org/10.3390/microorganisms10020280
  12. Wang J et al., “SARS-CoV-2 Spike Protein S1 Domain Accelerates α-Synuclein Phosphorylation and
    Aggregation in Cellular Models of Synucleinopathy,” Mol Neurobiol. 2024, 61, 4: 2446-2458. doi:
    https://doi.org/10.1007/s12035-023-03726-9

D. Autoimmune

  1. Heil M, “Self-DNA driven inflammation in COVID-19 and after mRNA-based vaccination: lessons for
    non-COVID-19 pathologies,” Front. Immunol., 2023, 14. doi:
    https://doi.org/10.3389/fimmu.2023.1259879
  2. Kanduc D, “From Anti-SARS-CoV-2 Immune Responses to COVID-19 via Molecular Mimicry,”
    Antibodies 2020, 9, 3: 33. doi: https://doi.org/10.3390/antib9030033
  3. Kanduc D and Y Shoenfeld, “Molecular mimicry between SARS-CoV-2 spike glycoprotein and
    mammalian proteomes: implications for the vaccine,” Immunol Res 2020, 68: 310-313. doi:
    https://doi.org/10.1007/s12026-020-09152-6
  4. Nunez-Castilla J et al., “Potential autoimmunity resulting from molecular mimicry between SARSCoV-
    2 spike and human proteins,” Viruses 2022, 14, 7: 1415. https://doi.org/10.3390/v14071415
  5. Rodriguez Y et al., “Autoinflammatory and autoimmune conditions at the crossroad of COVID-19,” J.
    Autoimmun. 2020, 114: 102506. doi: https://doi.org/10.1016/j.jaut.2020.102506
  6. Vojdani A and D Kharrazian, “Potential antigenic cross-reactivity between SARS-CoV-2 and human
    tissue with a possible link to an increase in autoimmune diseases,” Clin Immunol. 2020, 217:doi: https://doi.org/10.1016/j.clim.2020.108480
  7. Vojdani A et al., “Reaction of Human Monoclonal Antibodies to SARS-CoV-2 Proteins With Tissue
    Antigens: Implications for Autoimmune Diseases,” Front. Immunol. 2021, 11 (Sec. Autoimmune and
    Autoinflammatory Disorders). doi: https://doi.org/10.3389/fimmu.2020.617089

E. Blood pressure/hypertension

  1. Angeli F et al., “The spike ebect of acute respiratory syndrome coronavirus 2 and coronavirus disease
    2019 vaccines on blood pressure,” Eur J Intern Med. 2023, 109: 12-21. doi:
    10.1016/j.ejim.2022.12.004
  2. Sun Q et al., “SARS-coV-2 spike protein S1 exposure increases susceptibility to angiotensin IIinduced
    hypertension in rats by promoting central neuroinflammation and oxidative
    stress,” Neurochem. Res. 2023, 48, 3016–3026. doi: https://doi.org/10.1007/s11064-023-03949-1

F. CD147

  1. Avolio E et al., “The SARS-CoV-2 Spike Protein Disrupts Human Cardiac Pericytes Function through
    CD147 Receptor-Mediated Signalling: A Potential Non-infective Mechanism of COVID-19
    Microvascular Disease,” Clin. Sci. 2021, 135, 24: 2667–2689. doi:
    https://doi.org/10.1042/CS20210735
  2. Loh D, “The potential of melatonin in the prevention and attenuation of oxidative hemolysis and
    myocardial injury from cd147 SARS-CoV-2 spike protein receptor binding,” Melatonin Research 2020,
    3, 3: 380-416. doi: https://doi.org/10.32794/mr11250069
  3. Maugeri N et al., “Unconventional CD147-Dependent Platelet Activation Elicited by SARS-CoV-2 in
    COVID-19,” J. Thromb. Haemost. 2021, 20, 2: 434–448. doi: https://doi.org/10.1111/jth.15575

G. Cell membrane permeability, barrier dysfunction

  1. Asandei A et al., “Non-Receptor-Mediated Lipid Membrane Permeabilization by the SARS-CoV-2
    Spike Protein S1 Subunit,” ACS Appl. Mater. Interfaces 2020, 12, 50: 55649–55658. doi:
    https://doi.org/10.1021/acsami.0c17044
  2. Biancatelli RMLC, et al. “The SARS-CoV-2 spike protein subunit S1 induces COVID-19-like acute lung
    injury in Kappa18-hACE2 transgenic mice and barrier dysfunction in human endothelial cells,” Am. J.
    Physiol. Lung Cell. Mol. Physiol. 2021, 321: L477–L484. doi:
    https://doi.org/10.1152/ajplung.00223.2021
  3. Biering SB et al., “SARS-CoV-2 Spike Triggers Barrier Dysfunction and Vascular Leak via Integrins and
    TGF-β Signaling,” Nat. Commun. 2022, 13: 7630. doi: https://doi.org/10.1038/s41467-022-34910-5
  4. Buzhdygan TP et al., “The SARS-CoV-2 Spike Protein Alters Barrier Function in 2D Static and 3D
    Microfluidic in-Vitro Models of the Human Blood-Brain Barrier,” Neurobiol. Dis. 2020, 146: 105131.
    doi: https://doi.org/10.1016/j.nbd.2020.105131
  5. Chaves JCS et al., “Diberential Cytokine Responses of APOE3 and APOE4 Blood–brain Barrier Cell
    Types to SARS-CoV-2 Spike Proteins,” J. Neuroimmune Pharmacol. 2024, 19, 22. doi:
    https://doi.org/10.1007/s11481-024-10127-9
  6. Correa Y et al., “SARS-CoV-2 spike protein removes lipids from model membranes and interferes with the capacity of high-density lipoprotein to exchange lipids,” J. Colloid Interface Sci. 2021, 602: 732- doi: https://doi.org/10.1016/j.jcis.2021.06.056
  7. DeOre BJ et al., “SARS-CoV-2 Spike Protein Disrupts Blood-Brain Barrier Integrity via RhoA
    Activation,” J Neuroimmune Pharmacol. 2021, 16, 4:722-728. Doi: https://doi.org/10.1007/s11481-
    021-10029-0
  8. Guo Y and V Kanamarlapudi, “Molecular Analysis of SARS-CoV-2 Spike Protein-Induced Endothelial
    Cell Permeability and vWF Secretion,” Int. J. Mol. Sci. 2023, 24, 6: 5664. doi:
    https://doi.org/10.3390/ijms24065664
  9. Luchini A et al., “Lipid bilayer degradation induced by SARS-CoV-2 spike protein as revealed by
    neutron reflectometry,” Sci. Rep. 2021, 11: 14867. doi: https://doi.org/10.1038/s41598-021-93996-x
  10. Luo Y et al., “SARS-Cov-2 spike induces intestinal barrier dysfunction through the interaction
    between CEACAM5 and Galectin-9,” Front. Immunol. 2024, 15. doi:
    https://doi.org/10.3389/fimmu.2024.1303356
  11. Magro N et al., “Disruption of the blood-brain barrier is correlated with spike endocytosis by ACE2 +
    endothelia in the CNS microvasculature in fatal COVID-19. Scientific commentary on ‘Detection of
    blood-brain barrier disruption in brains of patients with COVID-19, but no evidence of brain
    penetration by SARS-CoV-2’,” Acta Neuropathol. 2024, 147, 1: 47. doi:
    https://doi.org/10.1007/s00401-023-02681-y
  12. Raghavan S et al., “SARS-CoV-2 Spike Protein Induces Degradation of Junctional Proteins That
    Maintain Endothelial Barrier Integrity,” Front. Cardiovasc. Med. 2021, 8, 687783. doi:
    https://doi.org/10.3389/fcvm.2021.687783
  13. Ruben ML et al., “The SARS-CoV-2 spike protein subunit S1 induces COVID-19-like acute lung injury
    in Κ18-hACE2 transgenic mice and barrier dysfunction in human endothelial cells,” Am J Physiol Lung
    Cell Mol Physiol. 2021, 321, 2: L477-L484. doi: https://doi.org/10.1152/ajplung.00223.2021

H. Cerebral, cerebrovascular, neurologic, blood-brain barrier, cognitive

  1. Bellucci M et al., “Post-SARS-CoV-2 infection and post-vaccine-related neurological complications
    share clinical features and the same positivity to anti-ACE2 antibodies,” Front. Immunol. 2024, 15
    (Sec. Multiple Sclerosis and Neuroimmunology). doi: https://doi.org/10.3389/fimmu.2024.1398028
  2. Burnett FN et al., “SARS-CoV-2 Spike Protein Intensifies Cerebrovascular Complications in Diabetic
    hACE2 Mice through RAAS and TLR Signaling Activation,” Int. J. Mol. Sci. 2023, 24, 22: 16394.
    doi: https://doi.org/10.3390/ijms242216394
  3. Choi JY et al., “SARS-CoV-2 spike S1 subunit protein-mediated increase of beta-secretase 1 (BACE1)
    impairs human brain vessel cells,” Biochem. Biophys. Res. Commun. 2022, 625, 20: 66-71.
    doi: https://doi.org/10.1016/j.bbrc.2022.07.113
  4. Clough E et al., “Mitochondrial Dynamics in SARS-COV2 Spike Protein Treated Human Microglia:
    Implications for Neuro-COVID,” J. Neuroimmune Pharmacol. 2021, 4, 16: 770–784. doi:
    https://doi.org/10.1007/s11481-021-10015-6
  5. Coly M, et al., “Subacute monomelic radiculoplexus neuropathy following Comirnaty(c) (Pfizer-
    BioNTech COVID-19) vaccination: A case report,” Revue Neurologique 2023, 179, 6: 636-639. doi:
    https://doi.org/10.1016/j.neurol.2023.02.063
  6. DeOre BJ et al., “SARS-CoV-2 Spike Protein Disrupts Blood-Brain Barrier Integrity via RhoA
    Activation,” J Neuroimmune Pharmacol. 2021, 16, 4: 722-728. Doi: https://doi.org/10.1007/s11481-
    021-10029-0
  7. Erdogan MA, “Prenatal SARS-CoV-2 Spike Protein Exposure Induces Autism-Like Neurobehavioral
    Changes in Male Neonatal Rats,” J Neuroimmune Pharmacol. 2023, 18, 4: 573-591. doi:
    10.1007/s11481-023-10089-4
  8. Erickson MA et al., “Blood-brain barrier penetration of non-replicating SARS-CoV-2 and S1 variants of
    concern induce neuroinflammation which is accentuated in a mouse model of Alzheimer’s disease,”
    Brain Behav Immun 2023, 109: 251-268. doi: https://doi.org/10.1016/j.bbi.2023.01.010
  9. Fontes-Dantas FL, “SARS-CoV-2 Spike Protein Induces TLR4-Mediated Long- Term Cognitive
    Dysfunction Recapitulating Post-COVID-19 Syndrome in Mice,” Cell Reports 2023, 42, 3: 112189. doi:
    https://doi.org/10.1016/j.celrep.2023.112189
  10. Frank MG et al., “Exploring the immunogenic properties of SARS-CoV-2 structural proteins:
    PAMP:TLR signaling in the mediation of the neuroinflammatory and neurologic sequelae of COVID-
    19,” Brain Behav Immun 2023, 111. doi: https://doi.org/10.1016/j.bbi.2023.04.009
  11. Frank MG et al., “SARS-CoV-2 S1 subunit produces a protracted priming of the neuroinflammatory,
    physiological, and behavioral responses to a remote immune challenge: A role for corticosteroids,”
    Brain Behav. Immun. 2024, 121: 87-103. doi: https://doi.org/10.1016/j.bbi.2024.07.034
  12. Heath SP et al., “SARS-CoV-2 Spike Protein Exacerbates Thromboembolic Cerebrovascular
    Complications in Humanized ACE2 Mouse Model,” Transl Stroke Res. 2024. doi:
    https://doi.org/10.1007/s12975-024-01301-5
  13. Khaddaj-Mallat R et al., “SARS-CoV-2 deregulates the vascular and immune functions of brain
    pericytes via Spike protein,” Neurobiol. Dis. 2021, 161, 105561. doi:
    https://doi.org/10.1016/j.nbd.2021.105561
  14. Kim ES et al., “Spike Proteins of SARS-CoV-2 Induce Pathological Changes in Molecular Delivery and
    Metabolic Function in the Brain Endothelial Cells,” Viruses 2021, 13, 10: 2021. doi:
    https://doi.org/10.3390/v13102021
  15. Lykhmus O et al., “Immunization with 674–685 fragment of SARS-Cov-2 spike protein induces
    neuroinflammation and impairs episodic memory of mice,” Biochem. Biophys. Res.
    Commun. 2022, 622: 57–63. doi: https://doi.org/10.1016/j.bbrc.2022.07.016
  16. Magro N et al., “Disruption of the blood-brain barrier is correlated with spike endocytosis by ACE2 +
    endothelia in the CNS microvasculature in fatal COVID-19. Scientific commentary on ‘Detection of
    blood-brain barrier disruption in brains of patients with COVID-19, but no evidence of brain
    penetration by SARS-CoV-2’,” Acta Neuropathol. 2024, 147, 1: 47. doi:
    https://doi.org/10.1007/s00401-023-02681-y
  17. Oh J et al., “SARS-CoV-2 Spike Protein Induces Cognitive Deficit and Anxiety-Like Behavior in Mouse
    via Non-cell Autonomous Hippocampal Neuronal Death,” Scientific Reports 2022, 12, 5496. doi:
    https://doi.org/10.1038/s41598-022-09410-7
  18. Oka N et al., “SARS-CoV-2 S1 protein causes brain inflammation by reducing intracerebral
    acetylcholine production,” iScience 2023, 26, 6: 106954. doi: 10.1016/j.isci.2023.106954
  19. Peluso MJ et al., “SARS-CoV-2 and mitochondrial proteins in neural-derived exosomes of COVID-19,”
    Ann Neurol 2022, 91, 6: 772-781. doi: https://doi.org/10.1002/ana.26350
  20. Petrovszki D et al., “Penetration of the SARS-CoV-2 Spike Protein across the Blood-Brain Barrier, as
    Revealed by a Combination of a Human Cell Culture Model System and Optical
    Biosensing,” Biomedicines 2022, 10, 1: 188. doi: https://doi.org/10.3390/biomedicines10010188
  21. Rong Z et al., “Persistence of spike protein at the skull-meninges-brain axis may contribute to the
    neurological sequelae of COVID-19,” Cell Host Microbe 2024, 26: S1931-3128(24)00438-4. doi:
    10.1016/j.chom.2024.11.007
  22. Suprewicz L et al., “Blood-brain barrier function in response to SARS-CoV-2 and its spike
    protein,” Neurol. Neurochir Pol. 2023, 57: 14–25. doi: 10.5603/PJNNS.a2023.0014
  23. Suprewicz L et al., “Recombinant human plasma gelsolin reverses increased permeability of the
    blood-brain barrier induced by the spike protein of the SARS-CoV-2 virus,” J Neuroinflammation 2022,
    19, 1: 282, doi: https://doi.org/10.1186/s12974-022-02642-4
  24. Wu ML et al., “Mast cell activation triggered by SARS-CoV-2 causes inflammation in brain
    microvascular endothelial cells and microglia,” Front. Cell. Infect. Microbiol., 2024, 14. doi:
    https://doi.org/10.3389/fcimb.2024.1358873

I. Clinical pathology

  1. Baumeier C et al., “Intramyocardial Inflammation after COVID-19 Vaccination: An Endomyocardial
    Biopsy-Proven Case Series,” Int. J. Mol. Sci. 2022, 23: 6940. doi:
    https://doi.org/10.3390/ijms23136940
  2. Burkhardt A, “Pathology Conference: Vaccine-Induced Spike Protein Production in the Brain, Organs
    etc., now Proven,” Report24.news. 2022, https://report24.news/pathologie-konferenzimpfinduzierte-
    spike-produktion-in-gehirn-u-a-organen-nun-erwiesen/
  3. Craddock V et al., “Persistent circulation of soluble and extracellular vesicle-linked Spike protein in
    individuals with postacute sequelae of COVID-19,” J Med. Virol. 2023, 95, 2: e28568. doi:
    https://doi.org/10.1002/jmv.28568
  4. De Michele M et al., “Evidence of SARS-CoV-2 Spike Protein on Retrieved Thrombi from COVID-19
    Patients,” J. Hematol. Oncol. 2022, 15, 108. doi: https://doi.org/10.1186/s13045-022-01329-w
  5. De Sousa PMB et al., “Fatal Myocarditis following COVID-19 mRNA Immunization: A Case Report and
    Diberential Diagnosis Review,” Vaccines 2024, 12, 2: 194.
    doi: https://doi.org/10.3390/vaccines12020194
  6. Gamblicher T et al., “SARS-CoV-2 spike protein is present in both endothelial and eccrine cells of a
    chilblain-like skin lesion,” J Eur Acad Dermatol Venereol. 2020, 1, 10: e187-e189. doi:
    https://doi.org/10.1111/jdv.16970
  7. Gawaz A et al., “SARS-CoV-2–Induced Vasculitic Skin Lesions Are Associated with Massive Spike
    Protein Depositions in Autophagosomes,” J Invest Dermatol. 2024, 144, 2: 369-377.e4. doi:
    https://doi.org/10.1016/j.jid.2023.07.018
  8. Hulscher N et al., “Autopsy findings in cases of fatal COVID-19 vaccine-induced myocarditis,” ESC
    Heart Failure 2024. doi: https://doi.org/10.1002/ehf2.14680
  9. Ko CJ et al., “Discordant anti-SARS-CoV-2 spike protein and RNA staining in cutaneous perniotic
    lesions suggests endothelial deposition of cleaved spike protein,” J. Cutan Pathol 2021, 48, 1: 47–
  10. doi: https://doi.org/10.1111/cup.13866
  11. Magen E et al., “Clinical and Molecular Characterization of a Rare Case of BNT162b2 mRNA COVID-
    19 Vaccine-Associated Myositis,” Vaccines 2022, 10: 1135. doi:
    https://doi.org/10.3390/vaccines10071135
  12. Magro N et al., “Disruption of the blood-brain barrier is correlated with spike endocytosis by ACE2 +
    endothelia in the CNS microvasculature in fatal COVID-19. Scientific commentary on ‘Detection of
    blood-brain barrier disruption in brains of patients with COVID-19, but no evidence of brain
    penetration by SARS-CoV-2’,” Acta Neuropathol. 2024, 147, 1: 47. doi:
    https://doi.org/10.1007/s00401-023-02681-y
  13. Matschke J et al., “Neuropathology of patients with COVID-19 in Germany: a post-mortem case
    series,” Lancet Neurol. 2020, 19, 11: 919-929. doi: 10.1016/S1474-4422(20)30308-2
  14. Mörz M, “A Case Report: Multifocal Necrotizing Encephalitis and Myocarditis after BNT162b2 mRNA
    Vaccination against COVID-19,” Vaccines 2022, 10, 10: 1651. doi:
    https://doi.org/10.3390/vaccines10101651
  15. Rong Z et al., “Persistence of spike protein at the skull-meninges-brain axis may contribute to the
    neurological sequelae of COVID-19,” Cell Host Microbe 2024, 26: S1931-3128(24)00438-4. doi:
    10.1016/j.chom.2024.11.007
  16. Sano H et al., “A case of persistent, confluent maculopapular erythema following a COVID-19 mRNA
    vaccination is possibly associated with the intralesional spike protein expressed by vascular
    endothelial cells and eccrine glands in the deep dermis,” J. Dermatol. 2023, 50: 1208–1212. doi:
    https://doi.org/10.1111/1346-8138.16816
  17. Sano S et al., “SARS-CoV-2 spike protein found in the acrosyringium and eccrine gland of repetitive
    miliaria-like lesions in a woman following mRNA vaccination,” J. Dermatol. 2024, 51, 9: e293-e295.
    doi: https://doi.org/10.1111/1346-8138.17204
  18. Santonja C et al., “COVID-19 chilblain-like lesion: immunohistochemical demonstration of SARSCoV-
    2 spike protein in blood vessel endothelium and sweat gland epithelium in a polymerase chain
    reaction-negative patient,” Br J Dermatol. 2020, 183, 4: 778-780. doi:
    https://doi.org/10.1111/bjd.19338
  19. Soares CD et al., “Oral vesiculobullous lesions as an early sign of COVID-19: immunohistochemical
    detection of SARS-CoV-2 spike protein,” Br. J. Dermatol. 2021, 184, 1: e6.
    doi: https://doi.org/10.1111/bjd.19569
  20. Wu H et al., “Molecular evidence suggesting the persistence of residual SARS-CoV-2 and immune
    responses in the placentas of pregnant patients recovered from COVID-19,” Cell Prolif. 2021, 54, 9:
    e13091. doi: https://doi.org/10.1111/cpr.13091
  21. Yamamoto M et al., “Persistent varicella zoster virus infection following mRNA COVID-19 vaccination
    was associated with the presence of encoded spike protein in the lesion,” J. Cutan Immunol. Allergy.
    2022: 1-6. doi: https://doi.org/10.1002/cia2.12278
  22. Yonker LM et al., “Circulating Spike Protein Detected in Post–COVID-19 mRNA Vaccine Myocarditis,”
    Circulation 2023, 147, 11. doi: https://doi.org/10.1161/CIRCULATIONAHA.122.061025
  23. Yonker LM et al., “Multisystem inflammatory syndrome in children is driven by zonulin-dependent
    loss of gut mucosal barrier,” J Clin Invest. 2021, 131, 14: e149633. doi:
    https://doi.org/10.1172/JCI149633

J. Clotting, platelets, hemoglobin

  1. Al-Kuraishy HM et al., “Changes in the Blood Viscosity in Patients With SARS-CoV-2 Infection,” Front.
    Med. 2022, 9: 876017. doi: 10.3389/fmed.2022.876017
  2. Al-Kuraishy HM et al., “Hemolytic anemia in COVID-19,” Ann. Hematol. 2022, 101: 1887–1895. doi:
    10.1007/s00277-022-04907-7
  3. Appelbaum K et al., “SARS-CoV-2 spike-dependent platelet activation in COVID-19 vaccine-induced
    thrombocytopenia,” Blood Adv. 2022, 6: 2250–2253. doi: 10.1182/bloodadvances.2021005050
  4. Boschi C et al., “SARS-CoV-2 Spike Protein Induces Hemagglutination: Implications for COVID-19
    Morbidities and Therapeutics and for Vaccine Adverse Ebects,” Int. J. Biol. Macromol. 2022, 23, 24:
    15480, doi: https://doi.org/10.3390/ijms232415480
  5. Bye AP et al., “Aberrant glycosylation of anti-SARS-CoV-2 spike IgG is a prothrombotic stimulus for
    platelets,” Blood 2021, 138, 6: 1481–9. doi: https://doi.org/10.1182/blood.2021011871
  6. Carnevale R et al., “Toll-Like Receptor 4-Dependent Platelet-Related Thrombosis in SARS-CoV-2
    Infection,” Circ. Res. 2023, 132, 3: 290– 305, doi: https://doi.org/10.1161/CIRCRESAHA.122.321541
  7. Cossenza LC et al., “Inhibitory ebects of SARS-CoV-2 spike protein and BNT162b2 vaccine on
    erythropoietin-induced globin gene expression in erythroid precursor cells from patients with β-
    thalassemia,” Exp. Hematol. 2024, 129, 104128. doi: https://doi.org/10.1016/j.exphem.2023.11.002
  8. De Michele M et al., “Vaccine-induced immune thrombotic thrombocytopenia: a possible
    pathogenic role of ChAdOx1 nCoV-19 vaccine-encoded soluble SARS-CoV-2 spike protein,”
    Haematologica 2022, 107, 7: 1687–92. https://doi.org/10.3324/haematol.2021.280180
  9. Grobbelaar LM et al., “SARS-CoV-2 Spike Protein S1 Induces Fibrin(ogen) Resistant to Fibrinolysis:
    Implications for Microclot Formation in COVID-19,” Biosicence Reports 2021, 41, 8: BSR20210611.
    doi: https://doi.org/10.1042/BSR20210611
  10. Heath SP et al., “SARS-CoV-2 Spike Protein Exacerbates Thromboembolic Cerebrovascular
    Complications in Humanized ACE2 Mouse Model,” Transl Stroke Res. 2024. doi:
    https://doi.org/10.1007/s12975-024-01301-5
  11. Iba T and JH Levy, “The roles of platelets in COVID-19-associated coagulopathy and vaccine-induced
    immune thrombotic thrombocytopenia,” Trends Cardiovasc Med. 2022, 32, 1: 1-9. doi:
    https://doi.org/10.1016/j.tcm.2021.08.012
  12. Huynh TV et al., “Spike Protein of SARS-CoV-2 Activates Cardiac Fibrogenesis through NLRP3
    Inflammasomes and NF-κB Signaling,” Cells 2024, 13, 16: 1331.
    doi: https://doi.org/10.3390/cells13161331
  13. Iba T and JH Levy, “The roles of platelets in COVID-19-associated coagulopathy and vaccine-induced
    immune thrombotic thrombocytopenia,” Trends Cardiovasc Med. 2022, 32, 1: 1-9. doi:
    https://doi.org/10.1016/j.tcm.2021.08.012
  14. Jana S et al., “Cell-free hemoglobin does not attenuate the ebects of SARS-CoV-2 spike protein S1
    subunit in pulmonary endothelial cells,” Int. J. Mol. Sci. 2021, 22, 16: 9041. doi:
    https://doi.org/10.3390/ijms22169041
  15. Kim SY et al., “Characterization of heparin and severe acute respiratory syndrome-related
    coronavirus 2 (SARS-CoV-2) spike glycoprotein binding interactions,” Antivir Res. 2020, 181: 104873.
    doi: https://doi.org/10.1016/j.antiviral.2020.104873
  16. Kircheis R, “Coagulopathies after Vaccination against SARS-CoV-2 May Be Derived from a Combined
    Ebect of SARS-CoV-2 Spike Protein and Adenovirus Vector-Triggered Signaling Pathways,” Int. J. Mol.
    Sci. 2021, 22, 19: 10791. https://doi.org/10.3390/ijms221910791
  17. Kuhn CC et al. “Direct Cryo-ET observation of platelet deformation induced by SARS-CoV-2 spike
    protein,” Nat. Commun. 2023, 14, 620. doi: https://doi.org/10.1038/s41467-023-36279-5
  18. Li T et al., “Platelets Mediate Inflammatory Monocyte Activation by SARS-CoV-2 Spike Protein,” J.
    Clin. Invest. 2022, 132, 4: e150101. doi: 10.1172/JCI150101
  19. Maugeri N et al., “Unconventional CD147-Dependent Platelet Activation Elicited by SARS-CoV-2 in
    COVID-19,” J. Thromb. Haemost. 2021, 20, 2: 434–448, doi: https://doi.org/10.1111/jth.15575
  20. Passariello M et al., “Interactions of Spike-RBD of SARS-CoV-2 and Platelet Factor 4: New Insights in
    the Etiopathogenesis of Thrombosis,” Int. J. Mol. Sci. 2021, 22, 16: 8562.
    doi: https://doi.org/10.3390/ijms22168562
  21. Perico L et al., “SARS-CoV-2 Spike Protein 1 Activates Microvascular Endothelial Cells and
    Complement System Leading to Platelet Aggregation,” Front. Immunol. 2022, 13, 827146. doi:
    https://doi.org/10.3389/fimmu.2022.827146
  22. Roytenberg R et al., “Thymidine phosphorylase mediates SARS-CoV-2 spike protein enhanced
    thrombosis in K18-hACE2TG mice,” Thromb. Res. 2024, 244, 8: 109195. doi:
    10.1016/j.thromres.2024.109195
  23. Russo A, et al., “Implication of COVID-19 on Erythrocytes Functionality: Red Blood Cell Biochemical
    Implications and Morpho-Functional Aspects,” Int. J. Mol. Sci. 2022, 23, 4: 2171.
    doi: https://doi.org/10.3390/ijms23042171
  24. Ryu JK et al., “Fibrin drives thromboinflammation and neuropathology in COVID-19,” Nature 2024,
    633: 905-913. doi: https://doi.org/10.1038/s41586-024-07873-4
  25. Scheim, DE. “A Deadly Embrace: Hemagglutination Mediated by SARS-CoV-2 Spike Protein at its 22
    N-Glycosylation Sites, Red Blood Cell Surface Sialoglycoproteins, and Antibody,” Int. J. Mol.
    Sci. 2022, 23, 5: 2558. doi: https://doi.org/10.3390/ijms23052558
  26. Scheim DE et al., “Sialylated Glycan Bindings from SARS-CoV-2 Spike Protein to Blood and
    Endothelial Cells Govern the Severe Morbidities of COVID-19,” Int. J. Mol. Sci. 2023, 24, 23: 17039.
    doi: https://doi.org/10.3390/ijms242317039
  27. Sirsendu J et al., “Cell-Free Hemoglobin Does Not Attenuate the Ebects of SARS-CoV-2 Spike Protein
    S1 Subunit in Pulmonary Endothelial Cells,” Int. J. Mol. Sci., 2021, 22, 16: 9041. doi:
    https://doi.org/10.3390/ijms22169041
  28. Zhang S et al., “SARS-CoV-2 Binds Platelet ACE2 to Enhance Thrombosis in COVID-19,” J. Hematol.
    Oncol. 2020, 13, 120: 120. doi: https://doi.org/10.1186/s13045-020-00954-7
  29. Zhang Z et al., “SARS-CoV-2 spike protein dictates syncytium-mediated lymphocyte
    elimination,” Cell Death Di^er. 2021, 28, 2765–2777. doi: https://doi.org/10.1038/s41418-021-00782-
    3
  30. Zheng Y et al., “SARS-CoV-2 Spike Protein Causes Blood Coagulation and Thrombosis by Competitive Binding to Heparan Sulfate,” Int. J. Biol. Macromol. 2021, 193: 1124–1129. doi:
    https://doi.org/10.1016/j.ijbiomac.2021.10.112

K. Cytokines, chemokines, inteferon, interleukins

  1. Ao Z et al., “SARS-CoV-2 Delta spike protein enhances the viral fusogenicity and inflammatory
    cytokine production,” iScience 2022, 25, 8: 104759. doi: 10.1016/j.isci.2022.104759
  2. Chaves JCS et al., “Diberential Cytokine Responses of APOE3 and APOE4 Blood–brain Barrier Cell
    Types to SARS-CoV-2 Spike Proteins,” J. Neuroimmune Pharmacol. 2024, 19, 22. doi:
    https://doi.org/10.1007/s11481-024-10127-9
  3. Chittasupho C et al., “Targeting spike glycoprotein S1 mediated by NLRP3 inflammasome machinery
    and the cytokine releases in A549 lung epithelial cells by nanocurcumin,” Pharmaceuticals (Basel)
    2023, 16, 6: 862. doi: https://doi.org/10.3390/ph16060862
  4. Das T et al., “N-glycosylation of the SARS-CoV-2 spike protein at Asn331 and Asn343 is involved in
    spike-ACE2 binding, virus entry, and regulation of IL-6,” Microbiol. Immunol. 2024, 68, 5: 165-178.
    doi: https://doi.org/10.1111/1348-0421.13121
  5. Duarte C, “Age-dependent ebects of the recombinant spike protein/SARS-CoV-2 on the M-CSF- and
    IL-34-diberentiated macrophages in vitro,” Biochem. Biophys. Res. Commun. 2021, 546: 97–102. doi:
    https://doi.org/10.1016/j.bbrc.2021.01.104
  6. Forsyth CB et al., “The SARS-CoV-2 S1 spike protein promotes MAPK and NF-kB activation in human
    lung cells and inflammatory cytokine production in human lung and intestinal epithelial
    cells,” Microorganisms 2022, 10, 10: 1996. doi: https://doi.org/10.3390/microorganisms10101996
  7. Freitas RS et al., “SARS-CoV-2 Spike antagonizes innate antiviral immunity by targeting interferon
    regulatory factor 3,” Front Cell Infect Microbiol. 2021, 11: 789462. doi:
    https://doi.org/10.3389/fcimb.2021.789462
  8. Gasparello J et al., “Sulforaphane inhibits the expression of interleukin-6 and interleukin-8 induced in
    bronchial epithelial IB3-1 cells by exposure to the SARS-CoV-2 Spike protein,” Phytomedicine 2021,
    87: 153583. doi: https://doi.org/10.1016/j.phymed.2021.153583
  9. Ghazanfari D et al., “Mechanistic insights into SARS-CoV-2 spike protein induction of the chemokine
    CXCL10,” Sci. Rep. 2024, 14: 11179. doi: https://doi.org/10.1038/s41598-024-61906-6
  10. Gracie NP et al., “Cellular signalling by SARS-CoV-2 spike protein,” Microbiology Australia 2024, 45, 1:
    13-17. doi: https://doi.org/10.1071/MA24005
  11. Gu T et al., “Cytokine Signature Induced by SARS-CoV-2 Spike Protein in a Mouse Model,” Front.
    Immunol., 2021 (Sec. Inflammation). doi: https://doi.org/10.3389/fimmu.2020.621441
  12. Jugler C et al, “SARS-CoV-2 Spike Protein-Induced Interleukin 6 Signaling Is Blocked by a Plant-
    Produced Anti-Interleukin 6 Receptor Monoclonal Antibody,” Vaccines 2021, 9, 11:https://doi.org/10.3390/vaccines9111365
  13. Liang S et al., “SARS-CoV-2 spike protein induces IL-18-mediated cardiopulmonary inflammation via
    reduced mitophagy,” Signal Transduct Target Ther 2023, 8, 103. doi: https://doi.org/10.1038/s41392-
    023-01368-w
  14. Liu T et al., “RS-5645 attenuates inflammatory cytokine storm induced by SARS-CoV-2 spike protein
    and LPS by modulating pulmonary microbiota,” Int. J. Biol. Sci. 2021, 17, 13: 3305–3319.
    doi: 10.7150/ijbs.63329
  15. Liu X et al., “SARS-CoV-2 spike protein-induced cell fusion activates the cGAS-STING pathway and
    the interferon response,” Sci Signal. 2022, 15, 729: eabg8744. doi: 10.1126/scisignal.abg8744
  16. Niu C et al., “SARS-CoV-2 spike protein induces the cytokine release syndrome by stimulating T cells
    to produce more IL-2,” Front. Immunol. 2024, 15: 1444643. doi:
    https://doi.org/10.3389/fimmu.2024.1444643
  17. Norris B et al., “Evaluation of Glutathione in Spike Protein of SARS-CoV-2 Induced
    Immunothrombosis and Cytokine Dysregulation,” Antioxidants 2024, 13, 3: 271.
    doi: https://doi.org/10.3390/antiox13030271
  18. Olajide OA et al., “Induction of Exaggerated Cytokine Production in Human Peripheral Blood
    Mononuclear Cells by a Recombinant SARS-CoV-2 Spike Glycoprotein S1 and Its Inhibition by
    Dexamethasone,” Inflammation 2021, 44: 1865–1877. doi: https://doi.org/10.1007/s10753-021-
    01464-5
  19. Park YJ et al., “D-dimer and CoV-2 spike-immune complexes contribute to the production of PGE2
    and proinflammatory cytokines in monocytes,” PLoS Pathog., 2022, 18, 4: e1010468. doi:
    https://doi.org/10.1371/journal.ppat.1010468
  20. Patra T et al., “SARS-CoV-2 spike protein promotes IL-6 trans-signaling by activation of angiotensin II
    receptor signaling in epithelial cells,” PLoS Pathog. 2020, 16: e1009128. doi:
    https://doi.org/10.1371/journal.ppat.1009128
  21. Samsudin S et al., “SARS-CoV-2 spike protein as a bacterial lipopolysaccharide delivery system in an
    overzealous inflammatory cascade,” J. Mol. Biol. 2022, 14, 9: mjac058. doi:
    https://doi.org/10.1093/jmcb/mjac058
  22. Schroeder JT and AP Bieneman, “The S1 Subunit of the SARS-CoV-2 Spike protein activates human
    monocytes to produce cytokines linked to COVID-19: relevance to galectin-3,” Front Immunol. 2022,
    13: 831763. doi: https://doi.org/10.3389/fimmu.2022.831763
  23. Sharma VK et al., “Nanocurcumin Potently Inhibits SARS-CoV-2 Spike Protein-Induced Cytokine
    Storm by Deactivation of MAPK/NF-κB Signaling in Epithelial Cells,” ACS Appl. Bio Mater. 2022, 5, 2:
    483–491. doi: https://doi.org/10.1021/acsabm.1c00874
  24. Sui Y et al., “SARS-CoV-2 Spike Protein Suppresses ACE2 and Type I Interferon Expression in Primary
    Cells From Macaque Lung Bronchoalveolar Lavage,” Front. Immunol. 2021, 12. doi:
    https://doi.org/10.3389/fimmu.2021.658428
  25. Youn JY et al., “Therapeutic application of estrogen for COVID-19: Attenuation of SARS-CoV-2 spike
    protein and IL-6 stimulated, ACE2-dependent NOX2 activation, ROS production and MCP-1
    upregulation in endothelial cells,” Redox Biol. 2021, 46: 102099. doi:
    https://doi.org/10.1016/j.redox.2021.102099
  26. Zhang Q et al., “Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) membrane (M) and
    spike (S) proteins antagonize host type i interferon response,” Front Cell Infect Microbiol 2021, 11: doi: https://doi.org/10.3389/fcimb.2021.766922
  27. Zhang RG et al., “SARS-CoV-2 spike protein receptor binding domain promotes IL-6 and IL-8 release
    via ATP/P2Y2 and ERK1/2 signaling pathways in human bronchial epithelia,” Mol. Immunol. 2024, 167: 53-61. doi: https://doi.org/10.1016/j.molimm.2024.02.005

L. Endothelial

  1. Bhargavan B and GD Kanmogne, “SARS-CoV-2 spike proteins and cell–cell communication inhibits
    TFPI and induces thrombogenic factors in human lung microvascular endothelial cells and
    neutrophils: implications for COVID-19 coagulopathy pathogenesis,” Int. J. Mol. Sci. 2022, 23, 18:doi: https://doi.org/10.3390/ijms231810436
  2. Biancatelli RMLC, et al. “The SARS-CoV-2 spike protein subunit S1 induces COVID-19-like acute lung
    injury in Kappa18-hACE2 transgenic mice and barrier dysfunction in human endothelial cells,” Am. J.
    Physiol. Lung Cell. Mol. Physiol. 2021, 321: L477–L484. doi:
    https://doi.org/10.1152/ajplung.00223.2021
  3. Gamblicher T et al., “SARS-CoV-2 spike protein is present in both endothelial and eccrine cells of a
    chilblain-like skin lesion,” J Eur Acad Dermatol Venereol. 2020, 1, 10: e187-e189. doi:
    https://doi.org/10.1111/jdv.16970
  4. Guo Y and V Kanamarlapudi, “Molecular Analysis of SARS-CoV-2 Spike Protein-Induced Endothelial
    Cell Permeability and vWF Secretion,” Int. J. Mol. Sci. 2023, 24, 6: 5664.
    doi: https://doi.org/10.3390/ijms24065664
  5. Jana S et al., “Cell-free hemoglobin does not attenuate the ebects of SARS-CoV-2 spike protein S1
    subunit in pulmonary endothelial cells,” Int. J. Mol. Sci. 2021, 22, 16: 9041. doi:
    https://doi.org/10.3390/ijms22169041
  6. Kulkoviene G et al., “Diberential Mitochondrial, Oxidative Stress and Inflammatory Responses to
    SARS-CoV-2 Spike Protein Receptor Binding Domain in Human Lung Microvascular, Coronary Artery
    Endothelial and Bronchial Epithelial Cells,” Int. J. Mol. Sci. 2024, 25, 6: 3188.
    doi: https://doi.org/10.3390/ijms25063188
  7. Marrone L et al., “Tirofiban prevents the ebects of SARS-CoV-2 spike protein on macrophage
    activation and endothelial cell death,” Heliyon, 2024, 10, 15, e35341. doi:
    10.1016/j.heliyon.2024.e35341
  8. Meyer K et al., “SARS-CoV-2 Spike Protein Induces Paracrine Senescence and Leukocyte Adhesion in
    Endothelial Cells,” J. Virol. 2021, 95: e0079421. doi: https://doi.org/10.1128/jvi.00794-21
  9. Nuovo JG et al., “Endothelial Cell Damage Is the Central Part of COVID-19 and a Mouse Model
    Induced by Injection of the S1 Subunit of the Spike Protein,” Ann. Diagn. Pathol. 2021, 51, 151682.
    doi: https://doi.org/10.1016/j.anndiagpath.2020.151682
  10. Perico L et al., “SARS-CoV-2 and the spike protein in endotheliopathy,” Trends Microbiol. 2024, 32, 1:
    53-67. doi: 10.1016/j.tim.2023.06.004
  11. Perico L et al., “SARS-CoV-2 Spike Protein 1 Activates Microvascular Endothelial Cells and
    Complement System Leading to Platelet Aggregation,” Front. Immunol. 2022, 13, 827146. doi:
    https://doi.org/10.3389/fimmu.2022.827146
  12. Raghavan S et al., “SARS-CoV-2 Spike Protein Induces Degradation of Junctional Proteins That
    Maintain Endothelial Barrier Integrity,” Front. Cardiovasc. Med. 2021, 8, 687783. doi:
    https://doi.org/10.3389/fcvm.2021.687783
  13. Ratajczak MZ et al., “SARS-CoV-2 Entry Receptor ACE2 Is Expressed on Very Small CD45- Precursors
    of Hematopoietic and Endothelial Cells and in Response to Virus Spike Protein Activates the Nlrp3
    Inflammasome,” Stem Cell Rev Rep. 2021, 17, 1: 266-277. doi: https://doi.org/10.1007/s12015-020-
    10010-z
  14. Robles JP et al., “The Spike Protein of SARS-CoV-2 Induces Endothelial Inflammation through Integrin
    α5β1 and NF-κB Signaling,” J. Biol. Chem. 2022, 298, 3: 101695. doi:
    https://doi.org/10.1016/j.jbc.2022.101695
  15. Rotoli BM et al., “Endothelial cell activation by SARS-CoV-2 spike S1 protein: A crosstalk between
    endothelium and innate immune cells,” Biomedicines 2021, 9, 9: 1220. doi:
    https://doi.org/10.3390/biomedicines9091220
  16. Ruben ML et al., “The SARS-CoV-2 spike protein subunit S1 induces COVID-19-like acute lung injury
    in Κ18-hACE2 transgenic mice and barrier dysfunction in human endothelial cells,” Am J Physiol Lung
    Cell Mol Physiol. 2021, 321, 2: L477-L484. doi: https://doi.org/10.1152/ajplung.00223.2021
  17. Sano H et al., “A case of persistent, confluent maculopapular erythema following a COVID-19 mRNA
    vaccination is possibly associated with the intralesional spike protein expressed by vascular
    endothelial cells and eccrine glands in the deep dermis,” J. Dermatol. 2023, 50: 1208–1212. doi:
    https://doi.org/10.1111/1346-8138.16816
  18. Santonja C et al., “COVID-19 chilblain-like lesion: immunohistochemical demonstration of SARSCoV-
    2 spike protein in blood vessel endothelium and sweat gland epithelium in a polymerase chain
    reaction-negative patient,” Br J Dermatol. 2020, 183, 4: 778-780. doi:
    https://doi.org/10.1111/bjd.19338
  19. Scheim DE et al., “Sialylated Glycan Bindings from SARS-CoV-2 Spike Protein to Blood and
    Endothelial Cells Govern the Severe Morbidities of COVID-19,” Int. J. Mol. Sci. 2023, 24, 23: 17039.
    doi: https://doi.org/10.3390/ijms242317039
  20. Sirsendu J et al., “Cell-Free Hemoglobin Does Not Attenuate the Ebects of SARS-CoV-2 Spike Protein
    S1 Subunit in Pulmonary Endothelial Cells,” Int. J. Mol. Sci., 2021, 22, 16: 9041. doi:
    https://doi.org/10.3390/ijms22169041
  21. Stern B et al., “SARS-CoV-2 spike protein induces endothelial dysfunction in 3D engineered vascular
    networks,” J. Biomed. Mater. Res. A. 2023, 112, 4: 524-533. doi: https://doi.org/10.1002/jbm.a.37543
  22. Villacampa A et al., “SARS-CoV-2 S protein activates NLRP3 inflammasome and deregulates
    coagulation factors in endothelial and immune cells,” Cell Commun. Signal. 2024, 22, 38. doi:
    https://doi.org/10.1186/s12964-023-01397-6
  23. Wu ML et al., “Mast cell activation triggered by SARS-CoV-2 causes inflammation in brain
    microvascular endothelial cells and microglia,” Front. Cell. Infect. Microbiol. 2024, 14. doi:
    https://doi.org/10.3389/fcimb.2024.1358873
  24. Youn JY et al., “Therapeutic application of estrogen for COVID-19: Attenuation of SARS-CoV-2 spike
    protein and IL-6 stimulated, ACE2-dependent NOX2 activation, ROS production and MCP-1
    upregulation in endothelial cells,” Redox Biol. 2021, 46: 102099. doi:
    https://doi.org/10.1016/j.redox.2021.102099
  25. Zekri-Nechar K et al., “Spike Protein Subunits of SARS-CoV-2 Alter Mitochondrial Metabolism in
    Human Pulmonary Microvascular Endothelial Cells: Involvement of Factor Xa,” Dis. Markers 2022, doi: https://doi.org/10.1155/2022/1118195

M. Gastrointestinal

  1. Forsyth CB et al., “The SARS-CoV-2 S1 spike protein promotes MAPK and NF-kB activation in human
    lung cells and inflammatory cytokine production in human lung and intestinal epithelial
    cells,” Microorganisms 2022, 10, 10: 1996. doi: https://doi.org/10.3390/microorganisms10101996
  2. Li Z et al., “SARS-CoV-2 pathogenesis in the gastrointestinal tract mediated by Spike-induced
    intestinal inflammation,” Precis. Clin. Med. 2024, 7, 1: pbad034. doi:
    https://doi.org/10.1093/pcmedi/pbad034
  3. Luo Y et al., “SARS-Cov-2 spike induces intestinal barrier dysfunction through the interaction
    between CEACAM5 and Galectin-9,” Front. Immunol. 2024, 15. doi:
    https://doi.org/10.3389/fimmu.2024.1303356
  4. Nascimento RR et al., “SARS-CoV-2 Spike protein triggers gut impairment since mucosal barrier to
    innermost layers: From basic science to clinical relevance,” Mucosal Immunol. 2024, 17, 4: 565-583.
    doi: https://doi.org/10.1016/j.mucimm.2024.03.00
  5. Yilmaz A et al., “Diberential proinflammatory responses of colon epithelial cells to SARS-CoV-2 spike
    protein and Pseudomonas aeruginosa lipopolysaccharide,” Turk J Biochem. 2024. doi:
    https://doi.org/10.1515/tjb-2024-0144
  6. Yonker LM et al., “Multisystem inflammatory syndrome in children is driven by zonulin-dependent
    loss of gut mucosal barrier,” J Clin Invest. 2021, 131, 14: e149633. doi:
    https://doi.org/10.1172/JCI149633
  7. Zeng FM et al., “SARS-CoV-2 spike spurs intestinal inflammation via VEGF production in enterocytes,”
    EMBO Mol Med. 2022, 14: e14844. doi: https://doi.org/10.15252/emmm.202114844
  8. Zollner A et al., “Postacute COVID-19 is Characterized by Gut Viral Antigen Persistence in
    Inflammatory Bowel Diseases,” Gastroenterology 2022, 163, 2: 495-506.e8. doi:
    https://doi.org/10.1053/j.gastro.2022.04.037

N. Immune dysfunction

  1. Baldari CT et al., “Emerging Roles of SARS-CoV-2 Spike-ACE2 in Immune Evasion and Pathogenesis,”
    Trends Immunol. 2023, 44, 6. doi: https://doi.org/10.1016/j.it.2023.04.001
  2. Bocquet-Garcon A, “Impact of the SARS-CoV-2 Spike Protein on the Innate Immune System: A
    Review,” Cureus 2024, 16, 3: e57008. doi: 10.7759/cureus.57008
  3. Delgado JF et al., “SARS-CoV-2 spike protein vaccine-induced immune imprinting reduces
    nucleocapsid protein antibody response in SARS-CoV-2 infection,” J. Immunol. Res. 2022: 8287087.
    doi: https://doi.org/10.1155/2022/8287087
  4. Freitas RS et al., “SARS-CoV-2 Spike antagonizes innate antiviral immunity by targeting interferon
    regulatory factor 3,” Front Cell Infect Microbiol. 2021, 11: 789462. doi:
    https://doi.org/10.3389/fcimb.2021.789462
  5. Irrgang P et al., “Class switch toward noninflammatory, spike-specific IgG4 antibodies after repeated
    SARS-CoV-2 mRNA vaccination,” Sci. Immunol. 2022, 8, 79. doi: 10.1126/sciimmunol.ade2798
  6. Kim MJ et al., “The SARS-CoV-2 spike protein induces lung cancer migration and invasion in a TLR2-
    dependent manner,” Cancer Commun (London), 2023, 44, 2: 273–277.
    doi: https://doi.org/10.1002/cac2.12485
  7. Onnis A et al., “SARS-CoV-2 Spike protein suppresses CTL-mediated killing by inhibiting immune
    synapse assembly,” J Exp Med 2023, 220, 2: e20220906. doi: https://doi.org/10.1084/jem.20220906

O. Macrophages, monocytes, neutrophils

  1. Ahn WM et al., “SARS-CoV-2 Spike Protein Stimulates Macropinocytosis in Murine and Human
    Macrophages via PKC-NADPH Oxidase Signaling,” Antioxidants 2024, 13, 2: 175.
    doi: https://doi.org/10.3390/antiox13020175
  2. Ait-Belkacem I et al., “SARS-CoV-2 spike protein induces a diberential monocyte activation that may
    contribute to age bias in COVID-19 severity,” Sci. Rep. 2022, 12: 20824. doi:
    https://doi.org/10.1038/s41598-022-25259-2
  3. Barhoumi T et al., “SARS-CoV-2 coronavirus Spike protein-induced apoptosis, inflammatory, and
    oxidative stress responses in THP-1-like-macrophages: potential role of angiotensin-converting
    enzyme inhibitor (perindopril),” Front. Immunol. 2021, 12: 728896. doi:
    https://doi.org/10.3389/fimmu.2021.728896
  4. Bortolotti D et al., “SARS-CoV-2 Spike 1 Protein Controls Natural Killer Cell Activation via the HLAE/
    NKG2A Pathway,” Cells 2020, 9, 9: 1975. doi: https://doi.org/10.3390/cells9091975
  5. Cao X et al., “Spike protein of SARS-CoV-2 activates macrophages and contributes to induction of
    acute lung inflammation in male mice,” FASEB J. 2021, 35, e21801. doi:
    https://doi.org/10.1096/fj.202002742RR
  6. Chiok K et al., “Proinflammatory Responses in SARS-CoV-2 and Soluble Spike Glycoprotein S1
    Subunit Activated Human Macrophages,” Viruses 2023, 15, 3: 754.
    doi: https://doi.org/10.3390/v15030754
  7. Cory TJ et al., “Metformin Suppresses Monocyte Immunometabolic Activation by SARS-CoV-2 Spike
    Protein Subunit 1,” Front. Immunol. 2021, 12 (Sec. Cytokines and Soluble Mediators in Immunity):doi: https://doi.org/10.3389/fimmu.2021.733921
  8. Del Re A et al., “Ultramicronized Palmitoylethanolamide Inhibits NLRP3 Inflammasome Expression
    and Pro-Inflammatory Response Activated by SARS-CoV-2 Spike Protein in Cultured Murine Alveolar
    Macrophages,” Metabolites 2021, 11, 9: 592. doi: https://doi.org/10.3390/metabo11090592
  9. Duarte C, “Age-dependent ebects of the recombinant spike protein/SARS-CoV-2 on the M-CSF- and
    IL-34-diberentiated macrophages in vitro,” Biochem. Biophys. Res. Commun. 2021, 546: 97–102. doi:
    https://doi.org/10.1016/j.bbrc.2021.01.104
  10. Karwaciak I et al., “Nucleocapsid and Spike Proteins of the Coronavirus Sars-Cov-2 Induce Il6 in
    Monocytes and Macrophages—Potential Implications for Cytokine Storm Syndrome,” Vaccines 2021,
    9, 1, 54: 1–10. doi: https://doi.org/10.3390/vaccines9010054
  11. Li T et al., “Platelets Mediate Inflammatory Monocyte Activation by SARS-CoV-2 Spike Protein,” J.
    Clin. Invest. 2022, 132, 4: e150101. doi: 10.1172/JCI150101
  12. Loh JT et al., “Dok3 restrains neutrophil production of calprotectin during TLR4 sensing of SARS-CoV- 2 spike protein,” Front. Immunol. 2022, 13 (Sec. Molecular Innate Immunity). doi:
    https://doi.org/10.3389/fimmu.2022.996637
  13. Marrone L et al., “Tirofiban prevents the ebects of SARS-CoV-2 spike protein on macrophage
    activation and endothelial cell death,” Heliyon, 2024, 10, 15: e35341. doi:
    10.1016/j.heliyon.2024.e35341
  14. Miller GM et al., “SARS-CoV-2 and SARS-CoV-2 Spike protein S1 subunit Trigger Proinflammatory
    Response in Macrophages in the Absence of Productive Infection,” J. Immunol. 2023, 210
    (1_Supplement): 71.30. doi: https://doi.org/10.4049/jimmunol.210.Supp.71.30
  15. Onnis A et al., “SARS-CoV-2 Spike protein suppresses CTL-mediated killing by inhibiting immune
    synapse assembly,” J Exp Med 2023, 220, 2: e20220906. doi: https://doi.org/10.1084/jem.20220906
  16. Palestra F et al. “SARS-CoV-2 Spike Protein Activates Human Lung Macrophages,” Int. J. Mol.
    Sci. 2023, 24, 3: 3036. doi: https://doi.org/10.3390/ijms24033036
  17. Park C et al., “Murine alveolar Macrophages Rapidly Accumulate intranasally Administered SARSCoV-
    2 Spike Protein leading to neutrophil Recruitment and Damage,” Elife 2024, 12, RP86764. doi:
    https://doi.org/10.7554/eLife.86764.3
  18. Park YJ et al., “D-dimer and CoV-2 spike-immune complexes contribute to the production of PGE2
    and proinflammatory cytokines in monocytes,” PLoS Pathog. 2022, 18, 4: e1010468. doi:
    https://doi.org/10.1371/journal.ppat.1010468
  19. Park YJ et al., “Pyrogenic and inflammatory mediators are produced by polarized M1 and M2
    macrophages activated with D-dimer and SARS-CoV-2 spike immune complexes,” Cytokine 2024,
    173: 156447. doi: https://doi.org/10.1016/j.cyto.2023.156447
  20. Patterson BK et al., “Persistence of SARS CoV-2 S1 Protein in CD16+ Monocytes in Post-Acute
    Sequelae of COVID-19 (PASC) up to 15 Months Post-Infection,” Front. Immunol. 12 (Sec. Viral
    Immunology). doi: https://doi.org/10.3389/fimmu.2021.746021
  21. Pence B, “Recombinant SARS-CoV-2 Spike Protein Mediates Glycolytic and Inflammatory Activation
    in Human Monocytes,” Innov Aging 2020, 4, sp. 1: 955. doi:
    https://doi.org/10.1093/geroni/igaa057.3493
  22. Satta S et al., “An engineered nano-liposome-human ACE2 decoy neutralizes SARS-CoV-2 Spike
    protein-induced inflammation in both murine and human macrophages,” Theranostics 2022, 12, 6:
    2639–2657. doi: 10.7150/thno.66831
  23. Schroeder JT and AP Bieneman, “The S1 Subunit of the SARS-CoV-2 Spike protein activates human
    monocytes to produce cytokines linked to COVID-19: relevance to galectin-3,” Front Immunol. 2022,
    13: 831763. doi: https://doi.org/10.3389/fimmu.2022.831763
  24. Shirato K and Takako Kizaki, “SARS-CoV-2 Spike Protein S1 Subunit Induces Pro- inflammatory
    Responses via Toll-Like Receptor 4 Signaling in Murine and Human Macrophages,” Heliyon 2021, 7, 2:
    e06187, doi: https://doi.org/10.1016/j.heliyon.2021.e06187
  25. Theobald SJ et al., “Long-lived macrophage reprogramming drives spike protein-mediated
    inflammasome activation in COVID-19,” EMBO Mol. Med. 2021, 13:e14150. doi:
    https://doi.org/10.15252/emmm.202114150
  26. Vettori M et al., “Ebects of Diberent Types of Recombinant SARS-CoV-2 Spike Protein on Circulating
    Monocytes’ Structure,” Int. J. Mol. Sci. 2023, 24, 11, 9373. doi: https://doi.org/10.3390/ijms24119373
  27. Youn YJ et al., “Nucleocapsid and spike proteins of SARS-CoV-2 drive neutrophil extracellular trap
    formation,” Immune Netw. 2021, 21, 2: e16. doi: https://doi.org/10.4110/in.2021.21.e16
  28. Zaki H and S Khan, “SARS-CoV-2 spike protein induces inflammatory molecules through TLR2 in
    macrophages and monocytes,” J. Immunol. 2021, 206 (1_supplement): 62.07. doi:
    https://doi.org/10.4049/jimmunol.206.Supp.62.07

P. MAPK

  1. Arjsri P et al., “Hesperetin from root extract of Clerodendrum petasites S. Moore inhibits SARS-CoV-2
    spike protein S1 subunit-induced Nlrp3 inflammasome in A549 lung cells via modulation of the
    Akt/Mapk/Ap-1 pathway,” Int. J. Mol. Sci. 2022, 23, 18: 10346. doi:
    https://doi.org/10.3390/ijms231810346
  2. Bhattacharyya S and JK Tobacman, “SARS-CoV-2 spike protein-ACE2 interaction increases
    carbohydrate sulfotransferases and reduces N-acetylgalactosamine-4-sulfatase by p38 MAPK,”
    Signal Transduct Target Ther 2024, 9, 39. doi: https://doi.org/10.1038/s41392-024-01741-3
  3. Forsyth CB et al., “The SARS-CoV-2 S1 spike protein promotes MAPK and NF-kB activation in human
    lung cells and inflammatory cytokine production in human lung and intestinal epithelial
    cells,” Microorganisms 2022, 10, 10: 1996. doi: https://doi.org/10.3390/microorganisms10101996
  4. Johnson EL et al., “The S1 spike protein of SARS-CoV-2 upregulates the ERK/MAPK signaling pathway
    in DC-SIGN-expressing THP-1 cells,” Cell Stress Chaperones 2024, 29, 2: 227-234. doi:
    https://doi.org/10.1016/j.cstres.2024.03.002
  5. Khan S et al., “SARS-CoV-2 Spike Protein Induces Inflammation via TLR2-Dependent Activation of the
    NF-κB Pathway,” eLife 2021, 10: e68563, doi: https://doi.org/10.7554/elife.68563
  6. Kircheis R and O Planz, “Could a Lower Toll-like Receptor (TLR) and NF-κB Activation Due to a
    Changed Charge Distribution in the Spike Protein Be the Reason for the Lower Pathogenicity of
    Omicron?” Int. J. Mol. Sci. 2022, 23, 11: 5966. doi: https://doi.org/10.3390/ijms23115966
  7. Kyriakopoulos AM et al., “Mitogen Activated Protein Kinase (MAPK) Activation, p53, and Autophagy
    Inhibition Characterize the Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) Spike
    Protein Induced Neurotoxicity,” Cureus 2022, 14, 12: e32361. doi: 10.7759/cureus.32361
  8. Robles JP et al., “The Spike Protein of SARS-CoV-2 Induces Endothelial Inflammation through Integrin
    α5β1 and NF-κB Signaling,” J. Biol. Chem. 2022, 298, 3: 101695. doi:
    https://doi.org/10.1016/j.jbc.2022.101695
  9. Sharma VK et al., “Nanocurcumin Potently Inhibits SARS-CoV-2 Spike Protein-Induced Cytokine
    Storm by Deactivation of MAPK/NF-κB Signaling in Epithelial Cells,” ACS Appl. Bio Mater. 2022, 5, 2:
    483–491. doi: https://doi.org/10.1021/acsabm.1c00874
  10. Bhattacharyya S and JK Tobacman, “SARS-CoV-2 spike protein-ACE2 interaction increases
    carbohydrate sulfotransferases and reduces N-acetylgalactosamine-4-sulfatase by p38 MAPK,”
    Signal Transduct Target Ther 2024, 9, 39. doi: https://doi.org/10.1038/s41392-024-01741-3

Q. Mast cells

  1. Cao JB et al., “Mast cell degranulation-triggered by SARS-CoV-2 induces tracheal-bronchial epithelial
    inflammation and injury,” Virol. Sin. 2024, 39, 2: 309-318. doi:
    https://doi.org/10.1016/j.virs.2024.03.001
  2. Fajloun Z et al., “SARS-CoV-2 or Vaccinal Spike Protein can Induce Mast Cell Activation Syndrome
    (MCAS),” Infect Disord Drug Targets, 2025, 25, 1: e300424229561. doi:
    10.2174/0118715265319896240427045026
  3. Wu ML et al., “Mast cell activation triggered by SARS-CoV-2 causes inflammation in brain
    microvascular endothelial cells and microglia,” Front. Cell. Infect. Microbiol., 2024, 14. doi:
    https://doi.org/10.3389/fcimb.2024.1358873

R. Microglia

  1. Chang MH et al., “SARS-CoV-2 Spike Protein 1 Causes Aggregation of α-Synuclein via Microglia-
    Induced Inflammation and Production of Mitochondrial ROS: Potential Therapeutic Applications of
    Metformin,” Biomedicines 2024, 12, 6: 1223. doi: https://doi.org/10.3390/biomedicines12061223
  2. Clough E et al., “Mitochondrial Dynamics in SARS-COV2 Spike Protein Treated Human Microglia:
    Implications for Neuro-COVID,” J. Neuroimmune Pharmacol. 2021, 16, 4: 770–784. doi:
    https://doi.org/10.1007/s11481-021-10015-6
  3. Frank MG et al., “SARS-CoV-2 Spike S1 Subunit Induces Neuroinflammatory, Microglial and
    Behavioral Sickness Responses: Evidence of PAMP-Like Properties,” Brain Behav. Immun. 2022, 100:doi: https://doi.org/10.1016/j.bbi.2021.12.007
  4. Mishra R and AC Banerjea, “SARS-CoV-2 Spike targets USP33-IRF9 axis via exosomal miR-148a to
    activate human microglia,” Front. Immunol. 2021, 12: 656700. doi:
    https://doi.org/10.3389/fimmu.2021.656700
  5. Olajide OA et al., “SARS-CoV-2 spike glycoprotein S1 induces neuroinflammation in BV-2 microglia,”
    Mol. Neurobiol. 2022, 59: 445-458. doi: https://doi.org/10.1007/s12035-021-02593-6
  6. Wu ML et al., “Mast cell activation triggered by SARS-CoV-2 causes inflammation in brain
    microvascular endothelial cells and microglia,” Front. Cell. Infect. Microbiol. 2024, 14. doi:
    https://doi.org/10.3389/fcimb.2024.1358873

S. Microvascular

  1. Avolio E et al., “The SARS-CoV-2 Spike Protein Disrupts Human Cardiac Pericytes Function through
    CD147 Receptor-Mediated Signalling: A Potential Non-infective Mechanism of COVID-19
    Microvascular Disease,” Clin. Sci. 2021, 135, 24: 2667–2689. doi:
    https://doi.org/10.1042/CS20210735
  2. Bhargavan B and GD Kanmogne, “SARS-CoV-2 spike proteins and cell–cell communication inhibits
    TFPI and induces thrombogenic factors in human lung microvascular endothelial cells and
    neutrophils: implications for COVID-19 coagulopathy pathogenesis,” Int. J. Mol. Sci. 2022, 23, 18:doi: https://doi.org/10.3390/ijms231810436
  3. Kulkoviene G et al., “Diberential Mitochondrial, Oxidative Stress and Inflammatory Responses to
    SARS-CoV-2 Spike Protein Receptor Binding Domain in Human Lung Microvascular, Coronary Artery
    Endothelial and Bronchial Epithelial Cells,” Int. J. Mol. Sci. 2024, 25, 6: 3188.
    doi: https://doi.org/10.3390/ijms25063188
  4. Magro N et al., “Disruption of the blood-brain barrier is correlated with spike endocytosis by ACE2 +
    endothelia in the CNS microvasculature in fatal COVID-19. Scientific commentary on ‘Detection of
    blood-brain barrier disruption in brains of patients with COVID-19, but no evidence of brain
    penetration by SARS-CoV-2’,” Acta Neuropathol. 2024, 147, 1: 47. doi:
    https://doi.org/10.1007/s00401-023-02681-y
  5. Panigrahi S et al., “SARS-CoV-2 Spike Protein Destabilizes Microvascular Homeostasis,” Microbiol
    Spectr. 2021, 9, 3: e0073521. doi: https://doi.org/10.1128/Spectrum.00735-21
  6. Perico L et al., “SARS-CoV-2 Spike Protein 1 Activates Microvascular Endothelial Cells and
    Complement System Leading to Platelet Aggregation,” Front. Immunol. 2022, 13, 827146. doi:
    https://doi.org/10.3389/fimmu.2022.827146
  7. Wu ML et al., “Mast cell activation triggered by SARS-CoV-2 causes inflammation in brain
    microvascular endothelial cells and microglia,” Front. Cell. Infect. Microbiol. 2024, 14. doi:
    https://doi.org/10.3389/fcimb.2024.1358873
  8. Zekri-Nechar K et al., “Spike Protein Subunits of SARS-CoV-2 Alter Mitochondrial Metabolism in
    Human Pulmonary Microvascular Endothelial Cells: Involvement of Factor Xa,” Dis. Markers 2022:doi: https://doi.org/10.1155/2022/1118195

T. MIS-C, pediatric

  1. Colmenero I et al., “SARS-CoV-2 endothelial infection causes COVID-19 chilblains:
    histopathological, immunohistochemical and ultrastructural study of seven paediatric cases,” Br
    J Dermatol. 2020, 183: 729-737. doi: https://doi.org/10.1111/bjd.19327/
  2. De Sousa PMB et al., “Fatal Myocarditis following COVID-19 mRNA Immunization: A Case Report
    and Diberential Diagnosis Review,” Vaccines 2024, 12, 2: 194.
    doi: https://doi.org/10.3390/vaccines12020194
  3. Mayordomo-Colunga J et al., “SARS-CoV-2 spike protein in intestinal cells of a patient with
    coronavirus disease 2019 multisystem inflammatory syndrome,” J Pediatr. 2022, 243: 214-18e215.
    doi: https://doi.org/10.1016/j.jpeds.2021.11.058
  4. Rivas MN et al., “COVID-19–associated multisystem inflammatory syndrome in children (MIS-C):
    A novel disease that mimics toxic shock syndrome—the superantigen hypothesis,” J Allergy Clin
    Immunol 2021, 147, 1: 57-59. doi: 10.1016/j.jaci.2020.10.008
  5. Rivas MN et al., “Multisystem Inflammatory Syndrome in Children and Long COVID: The SARSCoV-
    2 Viral Superantigen Hypothesis,” Front Immunol. 2022, 13 (Sec. Molecular Innate Immunity)
    doi: https://doi.org/10.3389/fimmu.2022.941009
  6. Sacco K et al., “Immunopathological signatures in multisystem inflammatory syndrome in
    children and pediatric COVID-19,” Nat. Med. 2022, 28: 1050-1062. doi:
    https://doi.org/10.1038/s41591-022-01724-3
  7. Yonker LM et al., “Multisystem inflammatory syndrome in children is driven by zonulin-dependent
    loss of gut mucosal barrier,” J Clin Invest. 2021, 131, 14: e149633. doi:
    https://doi.org/10.1172/JCI149633

U. Mitochondria/metabolism

  1. Cao X et al., “The SARS-CoV-2 spike protein induces long-term transcriptional perturbations of
    mitochondrial metabolic genes, causes cardiac fibrosis, and reduces myocardial contractile in
    obese mice,” Mol. Metab. 2023, 74, 101756. doi: https://doi.org/10.1016/j.molmet.2023.101756
  2. Chang MH et al., “SARS-CoV-2 Spike Protein 1 Causes Aggregation of α-Synuclein via Microglia-
    Induced Inflammation and Production of Mitochondrial ROS: Potential Therapeutic Applications of
    Metformin,” Biomedicines 2024, 12, 6: 1223. doi: https://doi.org/10.3390/biomedicines12061223
  3. Clough E et al., “Mitochondrial Dynamics in SARS-COV2 Spike Protein Treated Human Microglia:
    Implications for Neuro-COVID,” Journal of Neuroimmune Pharmacology 2021, 16, 4: 770–784. doi:
    https://doi.org/10.1007/s11481-021-10015-6
  4. Huynh TV et al., “Spike Protein Impairs Mitochondrial Function in Human Cardiomyocytes:
    Mechanisms Underlying Cardiac Injury in COVID-19,” Cells 2023, 12, 877. doi:
    https://doi.org/10.3390/cells12060877
  5. Kulkoviene G et al., “Diberential Mitochondrial, Oxidative Stress and Inflammatory Responses to
    SARS-CoV-2 Spike Protein Receptor Binding Domain in Human Lung Microvascular, Coronary Artery
    Endothelial and Bronchial Epithelial Cells,” Int. J. Mol. Sci. 2024, 25, 6: 3188.
    doi: https://doi.org/10.3390/ijms25063188
  6. Mercado-Gómez M et al., “The spike of SARS-CoV-2 promotes metabolic rewiring in
    hepatocytes,” Commun. Biol. 2022, 5, 827. doi: https://doi.org/10.1038/s42003-022-03789-9
  7. Nguyen V, “The Spike Protein of SARS-CoV-2 Impairs Lipid Metabolism and Increases Susceptibility
    to Lipotoxicity: Implication for a Role of Nrf2,” Cells 2022, 11, 12: 1916. doi:
    https://doi.org/10.3390/cells11121916
  8. Yeung-Luk BH et al., “SARS-CoV-2 infection alters mitochondrial and cytoskeletal function in human
    respiratory epithelial cells mediated by expression of spike protein,” mBio 2023, 14, 4: e00820-23.
    doi: https://doi.org/10.1128/mbio.00820-23
  9. Zekri-Nechar K et al., “Spike Protein Subunits of SARS-CoV-2 Alter Mitochondrial Metabolism in
    Human Pulmonary Microvascular Endothelial Cells: Involvement of Factor Xa,” Dis. Markers 2022,doi: https://doi.org/10.1155/2022/1118195

V. Myocarditis/cardiac/cardiomyopathy

  1. Abdi A et al., “Biomed Interaction of SARS-CoV-2 with cardiomyocytes: Insight into the underlying
    molecular mechanisms of cardiac injury and pharmacotherapy,” Pharmacother. 2022, 146: 112518.
    doi: 10.1016/j.biopha.2021.112518
  2. Avolio E et al., “The SARS-CoV-2 Spike Protein Disrupts Human Cardiac Pericytes Function through
    CD147 Receptor-Mediated Signalling: A Potential Non-infective Mechanism of COVID-19
    Microvascular Disease,” Clin. Sci. 2021, 135, 24: 2667–2689. doi:
    https://doi.org/10.1042/CS20210735
  3. Baumeier C et al., “Intramyocardial Inflammation after COVID-19 Vaccination: An Endomyocardial
    Biopsy-Proven Case Series,” Int. J. Mol. Sci. 2022, 23: 6940. doi:
    https://doi.org/10.3390/ijms23136940
  4. Bellavite P et al., “Immune response and molecular mechanisms of cardiovascular adverse ebects
    of spike proteins from SARS-coV-2 and mRNA vaccines,” Biomedicines 2023, 11, 2: 451. doi:
    https://doi.org/10.3390/biomedicines11020451
  5. Boretti A. “PQQ Supplementation and SARS-CoV-2 Spike Protein-Induced Heart Inflammation,” Nat.
    Prod. Commun. 2022, 17, 1934578×221080929. doi: https://doi.org/10.1177/1934578X221080929
  6. Buoninfante A et al., “Myocarditis associated with COVID-19 vaccination,” npj Vaccines 2024, 122.
    doi: https://doi.org/10.1038/s41541-024-00893-1
  7. Cao X et al., “The SARS-CoV-2 spike protein induces long-term transcriptional perturbations of
    mitochondrial metabolic genes, causes cardiac fibrosis, and reduces myocardial contractile in
    obese mice,” Mol. Metab. 2023, 74, 101756. doi: https://doi.org/10.1016/j.molmet.2023.101756
  8. Clemens DJ et al., “SARS-CoV-2 spike protein-mediated cardiomyocyte fusion may contribute to
    increased arrhythmic risk in COVID-19,” PLoS One 2023, 18, 3: e0282151.
    doi: https://doi.org/10.1371/journal.pone.0282151
  9. De Sousa PMB et al., “Fatal Myocarditis following COVID-19 mRNA Immunization: A Case Report and
    Diberential Diagnosis Review,” Vaccines 2024, 12, 2: 194.
    doi: https://doi.org/10.3390/vaccines12020194
  10. Forte E, “Circulating spike protein may contribute to myocarditis after COVID-19 vaccination,” Nat.
    Cardiovasc. Res. 2023, 2: 100. doi: https://doi.org/10.1038/s44161-023-00222-0
  11. Huang X et al., “Sars-Cov-2 Spike Protein-Induced Damage of hiPSC-Derived Cardiomyocytes,” Adv.
    Biol. 2022, 6, 7: e2101327. doi: https://doi.org/10.1002/adbi.202101327
  12. Hulscher N et al., “Autopsy findings in cases of fatal COVID-19 vaccine-induced myocarditis,” ESC
    Heart Failure 2024. doi: https://doi.org/10.1002/ehf2.14680
  13. Huynh TV et al., “Spike Protein Impairs Mitochondrial Function in Human Cardiomyocytes:
    Mechanisms Underlying Cardiac Injury in COVID-19,” Cells 2023, 12, 877. doi:
    https://doi.org/10.3390/cells12060877
  14. Huynh TV et al., “Spike Protein of SARS-CoV-2 Activates Cardiac Fibrogenesis through NLRP3
    Inflammasomes and NF-κB Signaling,” Cells 2024, 13, 16: 1331.
    doi: https://doi.org/10.3390/cells13161331
  15. Imig JD, “SARS-CoV-2 spike protein causes cardiovascular disease independent of viral infection,”
    Clin Sci (Lond) 2022, 136, 6: 431–434. doi: https://doi.org/10.1042/CS20220028
  16. Kato Y et al., “TRPC3-Nox2 Protein Complex Formation Increases the Risk of SARS-CoV-2 Spike
    Protein-Induced Cardiomyocyte Dysfunction through ACE2 Upregulation,” Int. J. Mol. Sci. 2023, 24, 1: doi: https://doi.org/10.3390/ijms24010102
  17. Kawano H et al., “Fulminant Myocarditis 24 Days after Coronavirus Disease Messenger Ribonucleic
    Acid Vaccination,” Intern. Med. 2022, 61, 15: 2319-2325. doi:
    https://doi.org/10.2169/internalmedicine.9800-22
  18. Li C. et al., “Intravenous Injection of Coronavirus Disease 2019 (COVID-19) MRNA Vaccine Can
    Induce Acute Myopericarditis in Mouse Model,” Clin. Infect. Dis. 2022, 74, 11: 1933-1950. doi:
    https://doi.org/10.1093/cid/ciab707
  19. Lin Z, “More than a key—the pathological roles of SARS-CoV-2 spike protein in COVID-19 related
    cardiac injury,” Sports Med Health Sci 2023, 6, 3: 209-220.
    doi: https://doi.org/10.1016/j.smhs.2023.03.004
  20. Rzymski P and Andrzej Fal, “To aspirate or not to aspirate? Considerations for the COVID-19
    vaccines,” Pharmacol. Rep 2022, 74: 1223–1227. doi: https://doi.org/10.1007/s43440-022-00361-4
  21. Schreckenberg R et al., “Cardiac side ebects of RNA-based SARS-CoV-2 vaccines: Hidden
    cardiotoxic ebects of mRNA-1273 and BNT162b2 on ventricular myocyte function and structure,” Br.
    J. Pharmacol. 2024, 181, 3: 345-361. doi: https://doi.org/10.1111/bph.16262
  22. Yonker LM et al., “Circulating Spike Protein Detected in Post–COVID-19 mRNA Vaccine Myocarditis,”
    Circulation 2023, 147, 11. doi: https://doi.org/10.1161/CIRCULATIONAHA.122.061025

W. NLRP3

  1. Albornoz EA et al., “SARS-CoV-2 drives NLRP3 inflammasome activation in human microglia through
    spike protein,” Mol. Psychiatr. 2023, 28: 2878–2893. doi: https://doi.org/10.1038/s41380-022-01831-
    0
  2. Arjsri P et al., “Hesperetin from root extract of Clerodendrum petasites S. Moore inhibits SARS-CoV-2
    spike protein S1 subunit-induced Nlrp3 inflammasome in A549 lung cells via modulation of the
    Akt/Mapk/Ap-1 pathway,” Int. J. Mol. Sci. 2022, 23, 18: 10346. doi:
    https://doi.org/10.3390/ijms231810346
  3. Chittasupho C et al., “Inhibition of SARS-CoV-2-Induced NLRP3 Inflammasome-Mediated Lung Cell
    Inflammation by Triphala-Loaded Nanoparticle Targeting Spike Glycoprotein S1,”
    Pharmaceutics 2024, 16, 6: 751. https://doi.org/10.3390/pharmaceutics16060751
  4. Chittasupho C et al., “Targeting spike glycoprotein S1 mediated by NLRP3 inflammasome machinery
    and the cytokine releases in A549 lung epithelial cells by nanocurcumin,” Pharmaceuticals (Basel)
    2023, 16, 6: 862. doi: https://doi.org/10.3390/ph16060862
  5. Corpetti C et al., “Cannabidiol inhibits SARS-Cov-2 spike (S) protein-induced cytotoxicity and
    inflammation through a PPARγ-dependent TLR4/NLRP3/Caspase-1 signaling suppression in Caco-2
    cell line,” Phytother. Res. 2021, 35, 12: 6893–6903. doi: https://doi.org/10.1002/ptr.7302
  6. Del Re A et al., “Ultramicronized Palmitoylethanolamide Inhibits NLRP3 Inflammasome Expression
    and Pro-Inflammatory Response Activated by SARS-CoV-2 Spike Protein in Cultured Murine Alveolar
    Macrophages.” Metabolites 2021, 11, 9: 592. dsoi: https://doi.org/10.3390/metabo11090592
  7. Dissook S et al., “Luteolin-rich fraction from Perilla frutescens seed meal inhibits spike glycoprotein
    S1 of SARS-CoV-2-induced NLRP3 inflammasome lung cell inflammation via regulation of
    JAK1/STAT3 pathway: A potential anti-inflammatory compound against inflammation-induced long-
    COVID,” Front. Med. 2023, 9: 1072056. doi: https://doi.org/10.3389/fmed.2022.1072056
  8. Huynh TV et al., “Spike Protein of SARS-CoV-2 Activates Cardiac Fibrogenesis through NLRP3
    Inflammasomes and NF-κB Signaling,” Cells 2024, 13, 16: 1331.
    doi: https://doi.org/10.3390/cells13161331
  9. Jiang Q et al., “SARS-CoV-2 spike S1 protein induces microglial NLRP3-dependent
    neuroinflammation and cognitive impairment in mice,” Exp. Neurol. 2025, 383: 115020. doi:
    https://doi.org/10.1016/j.expneurol.2024.115020
  10. Kucia M et al. “An evidence that SARS-Cov-2/COVID-19 spike protein (SP) damages hematopoietic
    stem/progenitor cells in the mechanism of pyroptosis in Nlrp3 inflammasome-dependent
    manner,” Leukemia 2021, 35: 3026-3029. doi: https://doi.org/10.1038/s41375-021-01332-z
  11. Ratajczak MZ et al., “SARS-CoV-2 Entry Receptor ACE2 Is Expressed on Very Small CD45- Precursors
    of Hematopoietic and Endothelial Cells and in Response to Virus Spike Protein Activates the Nlrp3
    Inflammasome,” Stem Cell Rev Rep. 2021, 17, 1: 266-277. doi: https://doi.org/10.1007/s12015-020-
    10010-z
  12. Semmarath W et al., “Cyanidin-3-O-glucoside and Peonidin-3-O-glucoside-Rich Fraction of Black
    Rice Germ and Bran Suppresses Inflammatory Responses from SARS-CoV-2 Spike Glycoprotein S1-
    Induction In Vitro in A549 Lung Cells and THP-1 Macrophages via Inhibition of the NLRP3
    Inflammasome Pathway,” Nutrients 2022, 14, 13: 2738. doi: https://doi.org/10.3390/nu14132738
  13. Villacampa A et al., “SARS-CoV-2 S protein activates NLRP3 inflammasome and deregulates
    coagulation factors in endothelial and immune cells,” Cell Commun. Signal. 2024, 22, 38. doi:
    https://doi.org/10.1186/s12964-023-01397-6

X. Ocular, ophthalmic, conjunctival

  1. Golob-Schwarzl N et al., “SARS-CoV-2 spike protein functionally interacts with primary human
    conjunctival epithelial cells to induce a pro-inflammatory response,” Eye 2022, 36: 2353–5. doi:
    https://doi.org/10.1038/s41433-022-02066-7
  2. Grishma K and Das Sarma, “The Role of Coronavirus Spike Protein in Inducing Optic Neuritis in Mice:
    Parallels to the SARS-CoV-2 Virus,” J Neuroophthalmol 2024, 44, 3: 319-329. doi:
    10.1097/WNO.0000000000002234
  3. Zhu G et al., “SARS-CoV-2 spike protein-induced host inflammatory response signature in human
    corneal epithelial cells,” Mol. Med. Rep. 2021, 24: 584. doi: https://doi.org/10.3892/mmr.2021.12223

Y. Other cell signaling

  1. Caohuy H et al., “Inflammation in the COVID-19 airway is due to inhibition of CFTR signaling by the
    SARS-CoV-2 spike protein,” Sci. Rep. 2024, 14: 16895. doi: https://doi.org/10.1038/s41598-024-
    66473-4
  2. Choi JY et al., “SARS-CoV-2 spike S1 subunit protein-mediated increase of beta-secretase 1 (BACE1)
    impairs human brain vessel cells,” Biochem. Biophys. Res. Commun. 2022, 625, 20: 66-71.
    doi: https://doi.org/10.1016/j.bbrc.2022.07.113
  3. Corpetti C et al., “Cannabidiol inhibits SARS-Cov-2 spike (S) protein-induced cytotoxicity and
    inflammation through a PPARγ-dependent TLR4/NLRP3/Caspase-1 signaling suppression in Caco-2
    cell line,” Phytother. Res. 2021, 35, 12: 6893–6903. doi: https://doi.org/10.1002/ptr.7302
  4. Gracie NP et al., “Cellular signalling by SARS-CoV-2 spike protein,” Microbiology Australia 2024, 45, 1:
    13-17. doi: https://doi.org/10.1071/MA24005
  5. Li F et al., “SARS-CoV-2 Spike Promotes Inflammation and Apoptosis Through Autophagy by ROSSuppressed
    PI3K/AKT/mTOR Signaling,” Biochim Biophys Acta BBA – Mol Basis Dis 2021, 1867: doi: https://doi.org/10.1016/j.bbadis.2021.166260
  6. Li K et al., “SARS-CoV-2 Spike protein promotes vWF secretion and thrombosis via endothelial
    cytoskeleton-associated protein 4 (CKAP4),” Signal Transduct Targ Ther 2022, 7, 332. doi:
    https://doi.org/10.1038/s41392-022-01183-9
  7. Moutal A et al., “SARS-CoV-2 Spike protein co-opts VEGF-A/Neuropilin-1 receptor signaling to induce
    analgesia,” Pain 2020, 162, 1: 243–252. doi: 10.1097/j.pain.0000000000002097
  8. Munavilli GG et al., “COVID-19/SARS-CoV-2 virus spike protein-related delayed inflammatory
    reaction to hyaluronic acid dermal fillers: a challenging clinical conundrum in diagnosis and
    treatment,” Arch. Dermatol. Res. 2022, 314: 1-15. doi: https://doi.org/10.1007/s00403-021-02190-6
  9. Prieto-Villalobos J et al., “SARS-CoV-2 spike protein S1 activates Cx43 hemichannels and disturbs
    intracellular Ca2+ dynamics,” Biol Res. 2023, 56, 1: 56. doi: https://doi.org/10.1186/s40659-023-
    00468-9
  10. Rotoli BM et al., “Endothelial cell activation by SARS-CoV-2 spike S1 protein: A crosstalk between
    endothelium and innate immune cells,” Biomedicines 2021, 9, 9: 1220. doi:
    https://doi.org/10.3390/biomedicines9091220
  11. Singh N and Anuradha Bharara Singh, “S2 Subunit of SARS-nCoV-2 Interacts with Tumor Suppressor
    Protein p53 and BRCA: An in Silico Study,” Translational Oncology 2020, 13, 10: 100814. doi:
    https://doi.org/10.1016/j.tranon.2020.100814
  12. Singh RD, “The spike protein of sars-cov-2 induces heme oxygenase-1: pathophysiologic
    implications,” Biochim Biophys Acta, Mol Basis Dis 2022, 1868, 3: 166322. doi:
    https://doi.org/10.1016/j.bbadis.2021.166322
  13. Solis O et al., “The SARS-CoV-2 spike protein binds and modulates estrogen receptors,” Sci.
    Adv. 2022, 8, 48: eadd4150. doi: 10.1126/sciadv.add4150
  14. Suzuki YJ et al., “SARS-CoV-2 spike protein-mediated cell signaling in lung vascular cells,” Vascul.
    Pharmacol. 2021, 137: 106823. doi: https://doi.org/10.1016/j.vph.2020.106823
  15. Suzuki YJ and SG Gychka, “SARS-CoV-2 Spike Protein Elicits Cell Signaling in Human Host Cells:
    Implications for Possible Consequences of COVID-19 Vaccines,” Vaccines 2021, 9, 1: 36.
    doi: https://doi.org/10.3390/vaccines9010036
  16. Tillman TS et al., “SARS-CoV-2 Spike Protein Downregulates Cell Surface alpha7nAChR through a
    Helical Motif in the Spike Neck,” ACS Chem. Neurosci. 2023, 14, 4: 689–698. doi:
    https://doi.org/10.1021/acschemneuro.2c00610

Z. PASC, post COVID, long COVID

  1. Bellucci M et al., “Post-SARS-CoV-2 infection and post-vaccine-related neurological complications
    share clinical features and the same positivity to anti-ACE2 antibodies,” Front. Immunol. 2024, 15
    (Sec. Multiple Sclerosis and Neuroimmunology). doi: https://doi.org/10.3389/fimmu.2024.1398028
  2. Craddock V et al., “Persistent circulation of soluble and extracellular vesicle-linked Spike protein in
    individuals with postacute sequelae of COVID-19,” J Med. Virol. 2023, 95, 2: e28568. doi:
    https://doi.org/10.1002/jmv.28568
  3. Dissook S et al., “Luteolin-rich fraction from Perilla frutescens seed meal inhibits spike glycoprotein
    S1 of SARS-CoV-2-induced NLRP3 inflammasome lung cell inflammation via regulation of JAK1/STAT3 pathway: A potential anti-inflammatory compound against inflammation-induced long-COVID,” Front.
    Med. 2023, 9: 1072056. doi: https://doi.org/10.3389/fmed.2022.1072056
  4. Frank MG et al., “Exploring the immunogenic properties of SARS-CoV-2 structural proteins: PAMP:TLR signaling in the mediation of the neuroinflammatory and neurologic sequelae of COVID-19,” Brain Behav Immun 2023, 111. doi: https://doi.org/10.1016/j.bbi.2023.04.009
  5. Frank MG et al., “SARS-CoV-2 S1 subunit produces a protracted priming of the neuroinflammatory,
    physiological, and behavioral responses to a remote immune challenge: A role for corticosteroids,”
    Brain Behav. Immun. 2024, 121: 87-103. doi: https://doi.org/10.1016/j.bbi.2024.07.034
  6. Fraser ME at al., “SARS-CoV-2 Spike Protein and Viral RNA Persist in the Lung of Patients With Post-
    COVID Lung Disease (abstract),” Am J Respir Crit Care Med 2024, 209: A4193. doi:
    https://doi.org/10.1164/ajrccm-conference.2024.209.1_MeetingAbstracts.A4193
  7. Goh D et al., “Case report: Persistence of residual antigen and RNA of the SARS-CoV-2 virus in tissues
    of two patients with long COVID,” Front. Immunol. 2022, 13 (Sec. Viral Immunology). doi:
    https://doi.org/10.3389/fimmu.2022.939989
  8. Halma MTJ et al., “Exploring autophagy in treating SARS-CoV-2 spike protein-related pathology,”
    Endocrinol Metab (EnM) 2024, 14: 100163. doi: https://doi.org/10.1016/j.endmts.2024.100163
  9. Halma MTJ et al., “Strategies for the Management of Spike Protein-Related Pathology,” Microorganisms
    2023, 11, 5: 1308, doi: https://doi.org/10.3390/microorganisms11051308
  10. Hano S et al., “A case of persistent, confluent maculopapular erythema following a COVID-19 mRNA
    vaccination is possibly associated with the intralesional spike protein expressed by vascular
    endothelial cells and eccrine glands in the deep dermis,” J Dermatol 2023, 50, 9: 1208-1212. doi:
    https://doi.org/10.1111/1346-8138.16816
  11. Patterson BK et al., “Persistence of SARS CoV-2 S1 Protein in CD16+ Monocytes in Post-Acute
    Sequelae of COVID-19 (PASC) up to 15 Months Post-Infection,” Front. Immunol. 12 (Sec. Viral
    Immunology). doi: https://doi.org/10.3389/fimmu.2021.746021
  12. Peluso MJ et al., “Plasma-based antigen persistence in the post-acute phase of COVID-19,” Lancet
    2024, 24, 6: E345-E347. doi: 10.1016/S1473-3099(24)00211-1
  13. Rong Z et al., “Persistence of spike protein at the skull-meninges-brain axis may contribute to the
    neurological sequelae of COVID-19,” Cell Host Microbe 2024, 26: S1931-3128(24)00438-4. doi:
    10.1016/j.chom.2024.11.007
  14. Scholkmann F and CA May, “COVID-19, post-acute COVID-19 syndrome (PACS, ‘long COVID’) and
    post-COVID-19 vaccination syndrome (PCVS, ‘post-COVIDvac-syndrome’): Similarities and
    diberences,” Pathol Res Pract. 2023, 246: 154497. doi: https://doi.org/10.1016/j.prp.2023.154497
  15. Schultheiss C et al., “Liquid biomarkers of macrophage dysregulation and circulating spike protein
    illustrate the biological heterogeneity in patients with post-acute sequelae of COVID-19,” J Med Virol
    2023, 95, 1: e28364. doi: https://doi.org/10.1002/jmv.28364
  16. Swank Z, et al. “Persistent Circulating Severe Acute Respiratory Syndrome Coronavirus 2 Spike Is
    Associated With Post-acute Coronavirus Disease 2019 Sequelae,” Clin. Infect. Dis. 2023, 76, 3: e487–
    e490. doi: https://doi.org/10.1093/cid/ciac722
  17. Theoharides TC, “Could SARS-CoV-2 Spike Protein Be Responsible for Long-COVID Syndrome?” Mol.
    Neurobiol. 2022, 59, 3: 1850–1861. doi: https://doi.org/10.1007/s12035-021-02696-0
  18. Visvabharathy L et al., “Case report: Treatment of long COVID with a SARS-CoV-2 antiviral and IL-6
    blockade in a patient with rheumatoid arthritis and SARS-CoV-2 antigen persistence,” Front. Med.
    2022, 9 (Sec. Infectious Diseases – Surveillance). doi: https://doi.org/10.3389/fmed.2022.1003103
  19. Yamamoto M et al., “Persistent varicella zoster virus infection following mRNA COVID-19 vaccination
    was associated with the presence of encoded spike protein in the lesion,” J. Cutan Immunol. Allergy.
    2022:1–6. doi: https://doi.org/10.1002/cia2.12278
  20. Zollner A et al., “Postacute COVID-19 is Characterized by Gut Viral Antigen Persistence in
    Inflammatory Bowel Diseases,” Gastroenterology 2022, 163, 2: 495-506.e8. doi:
    https://doi.org/10.1053/j.gastro.2022.04.037

AA. Pregnancy

  1. Erdogan MA, “Prenatal SARS-CoV-2 Spike Protein Exposure Induces Autism-Like Neurobehavioral
    Changes in Male Neonatal Rats,” J Neuroimmune Pharmacol. 2023, 18, 4: 573-591. doi:
    10.1007/s11481-023-10089-4
  2. Guo X et al., “Regulation of proinflammatory molecules and tissue factor by SARS-CoV-2 spike
    protein in human placental cells: implications for SARS-CoV-2 pathogenesis in pregnant women,”
    Front. Immunol. 2022, 13: 876555–876555. doi: https://doi.org/10.3389/fimmu.2022.876555
  3. Kammala AK et al., “In vitro mRNA-S maternal vaccination induced altered immune regulation at the
    maternal-fetal interface,” Am. J. Reprod. Immunol. 2024, 91, 5: e13861. doi:
    https://doi.org/10.1111/aji.13861
  4. Karrow NA et al., “Maternal COVID-19 Vaccination and Its Potential Impact on Fetal and Neonatal
    Development,” Vaccines 2021, 9: 1351. doi: https://doi.org/10.3390/vaccines9111351
  5. Parcial ALN et al., “SARS-CoV-2 Is Persistent in Placenta and Causes Macroscopic,
    Histopathological, and Ultrastructural Changes,” Viruses 2022, 14, 9: 1885.
    doi: https://doi.org/10.3390/v14091885
  6. Wu H et al., “Molecular evidence suggesting the persistence of residual SARS-CoV-2 and immune
    responses in the placentas of pregnant patients recovered from COVID-19,” Cell Prolif. 2021, 54, 9:
    e13091. doi: https://doi.org/10.1111/cpr.13091
  7. Zurlow M et al., “The anti-SARS-CoV-2 BNT162b2 vaccine suppresses mithramycin-induced erythroid
    diberentiation and expression of embryo-fetal globin genes in human erythroleukemia K562 cells.”
    Exp Cell Res 2023, 433, 2: 113853. doi: https://doi.org/10.1016/j.yexcr.2023.113853

BB. Pulmonary, respiratory

  1. Bhargavan B and GD Kanmogne, “SARS-CoV-2 spike proteins and cell–cell communication inhibits
    TFPI and induces thrombogenic factors in human lung microvascular endothelial cells and
    neutrophils: implications for COVID-19 coagulopathy pathogenesis,” Int. J. Mol. Sci. 2022, 23, 18:doi: https://doi.org/10.3390/ijms231810436
  2. Biancatelli RMLC et al., “The SARS-CoV-2 spike protein subunit S1 induces COVID-19-like acute lung
    injury in Kappa18-hACE2 transgenic mice and barrier dysfunction in human endothelial cells,” Am. J.
    Physiol. Lung Cell. Mol. Physiol. 2021, 321: L477–L484. doi:
    https://doi.org/10.1152/ajplung.00223.2021
  3. Cao JB et al., “Mast cell degranulation-triggered by SARS-CoV-2 induces tracheal-bronchial epithelial
    inflammation and injury,” Virol. Sin. 2024, 39, 2: 309-318. doi:
    https://doi.org/10.1016/j.virs.2024.03.001
  4. Cao X et al., “Spike protein of SARS-CoV-2 activates macrophages and contributes to induction of
    acute lung inflammation in male mice,” FASEB J. 2021, 35, e21801. doi:
    https://doi.org/10.1096/fj.202002742RR
  5. Caohuy H et al., “Inflammation in the COVID-19 airway is due to inhibition of CFTR signaling by the
    SARS-CoV-2 spike protein,” Sci. Rep. 2024, 14: 16895. doi: https://doi.org/10.1038/s41598-024-
    66473-4
  6. Chittasupho C et al., “Inhibition of SARS-CoV-2-Induced NLRP3 Inflammasome-Mediated Lung Cell
    Inflammation by Triphala-Loaded Nanoparticle Targeting Spike Glycoprotein S1,”
    Pharmaceutics 2024, 16, 6: 751. https://doi.org/10.3390/pharmaceutics16060751
  7. Chittasupho C et al., “Targeting spike glycoprotein S1 mediated by NLRP3 inflammasome machinery
    and the cytokine releases in A549 lung epithelial cells by nanocurcumin,” Pharmaceuticals (Basel)
    2023, 16, 6: 862. doi: https://doi.org/10.3390/ph16060862
  8. Del Re A et al., “Intranasal delivery of PEA-producing Lactobacillus paracasei F19 alleviates SARSCoV-
    2 spike protein-induced lung injury in mice,” Transl. Med. Commun. 2024, 9, 9. doi:
    https://doi.org/10.1186/s41231-024-00167-x
  9. Forsyth CB et al., “The SARS-CoV-2 S1 spike protein promotes MAPK and NF-kB activation in human
    lung cells and inflammatory cytokine production in human lung and intestinal epithelial
    cells,” Microorganisms 2022, 10, 10: 1996. doi: https://doi.org/10.3390/microorganisms10101996
  10. Fraser ME at al., “SARS-CoV-2 Spike Protein and Viral RNA Persist in the Lung of Patients With Post-
    COVID Lung Disease (abstract),” Am J Respir Crit Care Med 2024, 209: A4193. doi:
    https://doi.org/10.1164/ajrccm-conference.2024.209.1_MeetingAbstracts.A4193
  11. Greenberger JS et al., “SARS-CoV-2 Spike Protein Induces Oxidative Stress and Senescence in Mouse
    and Human Lung,” In Vivo 2024, 38, 4: 1546-1556; doi: https://doi.org/10.21873/invivo.13605
  12. Jana S et al., “Cell-free hemoglobin does not attenuate the ebects of SARS-CoV-2 spike protein S1
    subunit in pulmonary endothelial cells,” Int. J. Mol. Sci. 2021, 22, 16: 9041. doi:
    https://doi.org/10.3390/ijms22169041
  13. Kulkoviene G et al., “Diberential Mitochondrial, Oxidative Stress and Inflammatory Responses to
    SARS-CoV-2 Spike Protein Receptor Binding Domain in Human Lung Microvascular, Coronary Artery
    Endothelial and Bronchial Epithelial Cells,” Int. J. Mol. Sci. 2024, 25, 6: 3188.
    doi: https://doi.org/10.3390/ijms25063188
  14. Liang S et al., “SARS-CoV-2 spike protein induces IL-18-mediated cardiopulmonary inflammation via
    reduced mitophagy,” Signal Transduct Target Ther 2023, 8, 103. doi: https://doi.org/10.1038/s41392-
    023-01368-w
  15. Liu T et al., “RS-5645 attenuates inflammatory cytokine storm induced by SARS-CoV-2 spike protein
    and LPS by modulating pulmonary microbiota,” Int J Biol Sci. 2021, 17, 13: 3305–3319.
    doi: 10.7150/ijbs.63329
  16. Palestra F et al. “SARS-CoV-2 Spike Protein Activates Human Lung Macrophages,” Int. J. Mol.
    Sci. 2023, 24, 3: 3036. doi: https://doi.org/10.3390/ijms24033036
  17. Park C et al., “Murine alveolar Macrophages Rapidly Accumulate intranasally Administered SARSCoV-
    2 Spike Protein leading to neutrophil Recruitment and Damage,” Elife 2024, 12: RP86764. doi:
    https://doi.org/10.7554/eLife.86764.3
  18. Puthia MTL et al., “Experimental model of pulmonary inflammation induced by SARS-CoV-2 spike
    protein and endotoxin,” ACS Pharmacol Transl Sci. 2022, 5, 3: 141–8. doi:
    https://doi.org/10.1021/acsptsci.1c00219
  19. Rahman M et al., “Diberential Ebect of SARS-CoV-2 Spike Glycoprotein 1 on Human Bronchial and
    Alveolar Lung Mucosa Models: Implications for Pathogenicity,” Viruses 2021, 13, 12: 2537. doi:
    https://doi.org/10.3390/v13122537
  20. Ruben ML et al., “The SARS-CoV-2 spike protein subunit S1 induces COVID-19-like acute lung injury
    in Κ18-hACE2 transgenic mice and barrier dysfunction in human endothelial cells,” Am J Physiol Lung
    Cell Mol Physiol. 2021, 321, 2: L477-L484. doi: https://doi.org/10.1152/ajplung.00223.2021
  21. Segura-Villalobos D et al., “Jacareubin inhibits TLR4-induced lung inflammatory response caused by
    the RBD domain of SARS-CoV-2 Spike protein,” Pharmacol. Rep. 2022, 74: 1315–1325. doi:
    https://doi.org/10.1007/s43440-022-00398-5
  22. Semmarath W et al., “Cyanidin-3-O-glucoside and Peonidin-3-O-glucoside-Rich Fraction of Black
    Rice Germ and Bran Suppresses Inflammatory Responses from SARS-CoV-2 Spike Glycoprotein S1-
    Induction In Vitro in A549 Lung Cells and THP-1 Macrophages via Inhibition of the NLRP3
    Inflammasome Pathway,” Nutrients 2022, 14, 13: 2738. doi: https://doi.org/10.3390/nu14132738
  23. Sirsendu J et al., “Cell-Free Hemoglobin Does Not Attenuate the Ebects of SARS-CoV-2 Spike Protein
    S1 Subunit in Pulmonary Endothelial Cells,” Int. J. Mol. Sci. 2021, 22, 16: 9041. doi:
    https://doi.org/10.3390/ijms22169041
  24. Sui Y et al., “SARS-CoV-2 Spike Protein Suppresses ACE2 and Type I Interferon Expression in Primary
    Cells From Macaque Lung Bronchoalveolar Lavage,” Front. Immunol. 2021, 12. doi:
    https://doi.org/10.3389/fimmu.2021.658428
  25. Sung PS et al., “CLEC5A and TLR2 Are Critical in SARS-CoV-2-Induced NET Formation and Lung
    Inflammation,” J. Biomed. Sci. 2022, 29, 52. doi: https://doi.org/10.1186/s12929-022-00832-z
  26. Suzuki YJ et al., “SARS-CoV-2 spike protein-mediated cell signaling in lung vascular cells,” Vascul.
    Pharmacol. 2021, 137: 106823. doi: https://doi.org/10.1016/j.vph.2020.106823
  27. Yeung-Luk BH et al., “SARS-CoV-2 infection alters mitochondrial and cytoskeletal function in human
    respiratory epithelial cells mediated by expression of spike protein,” mBio 2023, 14, 4: e00820-23.
    doi: https://doi.org/10.1128/mbio.00820-23
  28. Zekri-Nechar K et al., “Spike Protein Subunits of SARS-CoV-2 Alter Mitochondrial Metabolism in
    Human Pulmonary Microvascular Endothelial Cells: Involvement of Factor Xa,” Dis. Markers 2022,doi: https://doi.org/10.1155/2022/1118195

CC. Renin-Angiotensin-Aldosterone System

  1. Burnett FN et al., “SARS-CoV-2 Spike Protein Intensifies Cerebrovascular Complications in Diabetic
    hACE2 Mice through RAAS and TLR Signaling Activation,” Int. J. Mol. Sci. 2023, 24, 22: 16394.
    doi: https://doi.org/10.3390/ijms242216394
  2. Lehmann KJ, “SARS-CoV-2-Spike Interactions with the Renin-Angiotensin-Aldosterone System –
    Consequences of Adverse Reactions of Vaccination,” J Biol Today’s World 2023, 12/4: 001-013. doi:
    https://doi.org/10.31219/osf.io/27g5h
  3. Matsuzawa Y et al., “Impact of Renin–Angiotensin–Aldosterone System Inhibitors on COVID-19,”
    Hypertens. Res. 2022, 45, 7: 1147–1153, doi: https://doi.org/10.1038/s41440-022-00922-3

DD. Senescence/aging

  1. Duarte C, “Age-dependent ebects of the recombinant spike protein/SARS-CoV-2 on the M-CSF- and
    IL-34-diberentiated macrophages in vitro,” Biochem. Biophys. Res. Commun. 2021, 546: 97–102. doi:
    https://doi.org/10.1016/j.bbrc.2021.01.104
  2. Greenberger JS et al., “SARS-CoV-2 Spike Protein Induces Oxidative Stress and Senescence in Mouse
    and Human Lung,” In Vivo 2024, 38, 4: 1546-1556. doi: https://doi.org/10.21873/invivo.13605
  3. Meyer K et al., “SARS-CoV-2 Spike Protein Induces Paracrine Senescence and Leukocyte Adhesion in
    Endothelial Cells,” J. Virol. 2021, 95, e0079421. doi: https://doi.org/10.1128/jvi.00794-21

EE. Stem cells

  1. Balzanelli MG et al., “The Role of SARS-CoV-2 Spike Protein in Long-term Damage of Tissues and
    Organs, the Underestimated Role of Retrotransposons and Stem Cells, a Working Hypothesis,”
    Endocr Metab Immune Disord Drug Targets 2025, 25, 2: 85-98. doi:
    10.2174/0118715303283480240227113401
  2. Kucia M et al. “An evidence that SARS-Cov-2/COVID-19 spike protein (SP) damages hematopoietic
    stem/progenitor cells in the mechanism of pyroptosis in Nlrp3 inflammasome-dependent
    manner,” Leukemia 2021, 35: 3026-3029. doi: https://doi.org/10.1038/s41375-021-01332-z
  3. Ropa J et al., “Human Hematopoietic Stem, Progenitor, and Immune Cells Respond Ex Vivo to SARSCoV-2 Spike Protein,” Stem Cell Rev Rep. 2021, 17, 1: 253-265. doi: https://doi.org/10.1007/s12015-020-10056-z

FF. Syncytia/cell fusion

  1. Braga L et al., “Drugs that inhibit TMEM16 proteins block SARS-CoV-2 spike-induced syncytia,”
    Nature 2021, 594: 88–93. doi: https://doi.org/10.1038/s41586-021-03491-6
  2. Cattin-Ortolá J et al., “Sequences in the cytoplasmic tail of SARS-CoV-2 Spike facilitate expression at
    the cell surface and syncytia formation,” Nat Commun 2021, 12, 1: 5333. doi:
    https://doi.org/10.1038/s41467-021-25589-1
  3. Clemens DJ et al., “SARS-CoV-2 spike protein-mediated cardiomyocyte fusion may contribute to
    increased arrhythmic risk in COVID-19,” PLoS One 2023, 18, 3: e0282151.
    doi: https://doi.org/10.1371/journal.pone.0282151
  4. Lazebnik Y, “Cell fusion as a link between the SARS-CoV-2 spike protein, COVID-19 complications,
    and vaccine side ebects,” Oncotarget 2021, 12, 25: 2476-2488. doi:
    https://doi.org/10.18632/oncotarget.28088
  5. Liu X et al., “SARS-CoV-2 spike protein-induced cell fusion activates the cGAS-STING pathway and
    the interferon response,” Sci Signal. 2022, 15, 729: eabg8744. doi: 10.1126/scisignal.abg8744
  6. Martinez-Marmol R et al., “SARS-CoV-2 infection and viral fusogens cause neuronal and glial fusion
    that compromises neuronal activity,” Sci. Adv. 2023, 9, 23. doi: 10.1126/sciadv.adg2248
  7. Rajah MM et al., “SARS-CoV-2 Alpha, Beta, and Delta variants display enhanced spike-mediated
    syncytia formation,” EMBO J. 2021, 40: e108944. doi: https://doi.org/10.15252/embj.2021108944
  8. Shirato K and Takako Kizaki, “SARS-CoV-2 Spike Protein S1 Subunit Induces Pro- inflammatory
    Responses via Toll-Like Receptor 4 Signaling in Murine and Human Macrophages,” Heliyon 2021, 7, 2:
    e06187. doi: https://doi.org/10.1016/j.heliyon.2021.e06187
  9. Theuerkauf SA et al., “Quantitative assays reveal cell fusion at minimal levels of SARS-CoV-2 spike
    protein and fusion from without,” iScience 2021, 24, 3: 102170.
    doi: https://doi.org/10.1016/j.isci.2021.102170
  10. Zhang Z et al., “SARS-CoV-2 spike protein dictates syncytium-mediated lymphocyte
    elimination,” Cell Death Di^er. 2021, 28: 2765–2777. doi: https://doi.org/10.1038/s41418-021-00782-
    3

GG. Therapeutics

  1. Almehdi AM et al., “SARS-CoV-2 Spike Protein: Pathogenesis, Vaccines, and Potential Therapies,”
    Infection 2021, 49, 5: 855–876. doi: https://doi.org/10.1007/s15010-021-01677-8
  2. Boretti A, “PQQ Supplementation and SARS-CoV-2 Spike Protein-Induced Heart Inflammation,” Nat.
    Prod. Commun. 2022, 17, 1934578×221080929. doi: https://doi.org/10.1177/1934578X221080929
  3. Boschi C et al., “SARS-CoV-2 Spike Protein Induces Hemagglutination: Implications for COVID-19
    Morbidities and Therapeutics and for Vaccine Adverse Ebects,” Int. J. Biol. Macromol. 2022, 23, 24:doi: https://doi.org/10.3390/ijms232415480
  4. Braga L et al., “Drugs that inhibit TMEM16 proteins block SARS-CoV-2 spike-induced syncytia,”
    Nature 2021, 594: 88–93. doi: https://doi.org/10.1038/s41586-021-03491-6
  5. Chang MH et al., “SARS-CoV-2 Spike Protein 1 Causes Aggregation of α-Synuclein via Microglia-
    Induced Inflammation and Production of Mitochondrial ROS: Potential Therapeutic Applications of
    Metformin,” Biomedicines 2024, 12, 6: 1223. doi: https://doi.org/10.3390/biomedicines12061223
  6. Chittasupho C et al., “Inhibition of SARS-CoV-2-Induced NLRP3 Inflammasome-Mediated Lung Cell
    Inflammation by Triphala-Loaded Nanoparticle Targeting Spike Glycoprotein S1,”
    Pharmaceutics 2024, 16, 6: 751. doi: https://doi.org/10.3390/pharmaceutics16060751
  7. Chittasupho C et al., “Targeting spike glycoprotein S1 mediated by NLRP3 inflammasome machinery
    and the cytokine releases in A549 lung epithelial cells by nanocurcumin,” Pharmaceuticals (Basel)
    2023, 16, 6: 862. doi: https://doi.org/10.3390/ph16060862
  8. Corpetti C et al., “Cannabidiol inhibits SARS-Cov-2 spike (S) protein-induced cytotoxicity and
    inflammation through a PPARγ-dependent TLR4/NLRP3/Caspase-1 signaling suppression in Caco-2
    cell line,” Phytother. Res. 2021, 35, 12: 6893–6903. doi: https://doi.org/10.1002/ptr.7302
  9. Cory TJ et al., “Metformin Suppresses Monocyte Immunometabolic Activation by SARS-CoV-2 Spike
    Protein Subunit 1,” Front. Immunol. 2021, 12 (Sec. Cytokines and Soluble Mediators in Immunity):doi: https://doi.org/10.3389/fimmu.2021.733921
  10. Del Re A et al., “Intranasal delivery of PEA-producing Lactobacillus paracasei F19 alleviates SARSCoV-
    2 spike protein-induced lung injury in mice,” Transl. Med. Commun. 2024, 9, 9. doi:
    https://doi.org/10.1186/s41231-024-00167-x
  11. Del Re A et al., “Ultramicronized Palmitoylethanolamide Inhibits NLRP3 Inflammasome Expression
    and Pro-Inflammatory Response Activated by SARS-CoV-2 Spike Protein in Cultured Murine Alveolar
    Macrophages,” Metabolites 2021, 11, 9: 592. doi: https://doi.org/10.3390/metabo11090592
  12. Ferrer MD et al., “Nitrite Attenuates the In Vitro Inflammatory Response of Immune Cells to the
    SARS-CoV-2 S Protein without Interfering in the Antioxidant Enzyme Activation,” Int. J. Mol.
    Sci. 2024, 25, 5: 3001. https://doi.org/10.3390/ijms25053001
  13. Frank MG et al., “SARS-CoV-2 S1 subunit produces a protracted priming of the neuroinflammatory,
    physiological, and behavioral responses to a remote immune challenge: A role for corticosteroids,”
    Brain Behav. Immun. 2024, 121: 87-103. doi: https://doi.org/10.1016/j.bbi.2024.07.034
  14. Frühbeck G et al., “FNDC4 and FNDC5 reduce SARS-CoV-2 entry points and spike glycoprotein S1-
    induced pyroptosis, apoptosis, and necroptosis in human adipocytes,” Cell Mol Immunol. 2021, 18,
    10: 2457–9. doi: https://doi.org/10.1038/s41423-021-00762-0
  15. Gasparello J et al., “Sulforaphane inhibits the expression of interleukin-6 and interleukin-8 induced in
    bronchial epithelial IB3-1 cells by exposure to the SARS-CoV-2 Spike protein,” Phytomedicine 2021,
    87: 153583. doi: https://doi.org/10.1016/j.phymed.2021.153583
  16. Halma MTJ et al., “Exploring autophagy in treating SARS-CoV-2 spike protein-related pathology,”
    Endocrinol Metab (EnM) 2024, 14: 100163. doi: https://doi.org/10.1016/j.endmts.2024.100163
  17. Halma MTJ et al., “Strategies for the Management of Spike Protein-Related Pathology,”
    Microorganisms 2023, 11, 5: 1308. doi: https://doi.org/10.3390/microorganisms11051308
  18. Jana S et al., “Cell-free hemoglobin does not attenuate the ebects of SARS-CoV-2 spike protein S1
    subunit in pulmonary endothelial cells,” Int. J. Mol. Sci. 2021, 22, 16: 9041. doi:
    https://doi.org/10.3390/ijms22169041
  19. Jugler C et al., “SARS-CoV-2 Spike Protein-Induced Interleukin 6 Signaling Is Blocked by a Plant-
    Produced Anti-Interleukin 6 Receptor Monoclonal Antibody,” Vaccines 2021, 9, 11: 1365.
    doi: https://doi.org/10.3390/vaccines9111365
  20. Ken W et al., “Low dose radiation therapy attenuates ACE2 depression and inflammatory cytokines
    induction by COVID-19 viral spike protein in human bronchial epithelial cells,” Int J Radiat Biol. 2022,
    98, 10:1532-1541. doi: https://doi.org/10.1080/09553002.2022.2055806
  21. Kumar N et al., “SARS-CoV-2 spike protein S1-mediated endothelial injury and pro-inflammatory
    state Is amplified by dihydrotestosterone and prevented by mineralocorticoid
    antagonism,” Viruses 2021, 13, 11: 2209. doi: https://doi.org/10.3390/v13112209
  22. Liu T et al., “RS-5645 attenuates inflammatory cytokine storm induced by SARS-CoV-2 spike protein
    and LPS by modulating pulmonary microbiota,” Int J Biol Sci. 2021, 17, 13: 3305–3319.
    doi: 10.7150/ijbs.63329
  23. Loh D, “The potential of melatonin in the prevention and attenuation of oxidative hemolysis and
    myocardial injury from cd147 SARS-CoV-2 spike protein receptor binding,” Melatonin Research 2020,
    3, 3: 380-416. doi: https://doi.org/10.32794/mr11250069
  24. Loh JT et al., “Dok3 restrains neutrophil production of calprotectin during TLR4 sensing of SARS-CoV-2 spike protein,” Front. Immunol. 2022, 13 (Sec. Molecular Innate Immunity). doi:
    https://doi.org/10.3389/fimmu.2022.996637
  25. Marrone L et al., “Tirofiban prevents the ebects of SARS-CoV-2 spike protein on macrophage
    activation and endothelial cell death,” Heliyon 2024, 10, 15: e35341. doi:
    10.1016/j.heliyon.2024.e35341
  26. Norris B et al., “Evaluation of Glutathione in Spike Protein of SARS-CoV-2 Induced
    Immunothrombosis and Cytokine Dysregulation,” Antioxidants 2024, 13, 3: 271.
    doi: https://doi.org/10.3390/antiox13030271
  27. Oka N et al., “SARS-CoV-2 S1 protein causes brain inflammation by reducing intracerebral
    acetylcholine production,” iScience 2023, 26, 6: 106954. doi: 10.1016/j.isci.2023.106954
  28. Olajide OA et al., “Induction of Exaggerated Cytokine Production in Human Peripheral Blood
    Mononuclear Cells by a Recombinant SARS-CoV-2 Spike Glycoprotein S1 and Its Inhibition by
    Dexamethasone,” Inflammation 2021, 44: 1865–1877. doi: https://doi.org/10.1007/s10753-021-
    01464-5
  29. Petrosino S and N Matende, “Elimination/Neutralization of COVID-19 Vaccine-Produced Spike
    Protein: Scoping Review,” Mathews Journal of Nutrition & Dietetics 2024, 7, 2. doi:
    https://doi.org/10.30654/MJND.10034
  30. Satta S et al., “An engineered nano-liposome-human ACE2 decoy neutralizes SARS-CoV-2 Spike
    protein-induced inflammation in both murine and human macrophages,” Theranostics 2022, 12, 6:
    2639–2657. doi: 10.7150/thno.66831
  31. Segura-Villalobos D et al., “Jacareubin inhibits TLR4-induced lung inflammatory response caused by
    the RBD domain of SARS-CoV-2 Spike protein,” Pharmacol. Rep. 2022, 74: 1315–1325. doi:
    https://doi.org/10.1007/s43440-022-00398-5
  32. Semmarath W et al., “Cyanidin-3-O-glucoside and Peonidin-3-O-glucoside-Rich Fraction of Black
    Rice Germ and Bran Suppresses Inflammatory Responses from SARS-CoV-2 Spike Glycoprotein S1-
    Induction In Vitro in A549 Lung Cells and THP-1 Macrophages via Inhibition of the NLRP3
    Inflammasome Pathway,” Nutrients 2022, 14, 13: 2738. doi: https://doi.org/10.3390/nu14132738
  33. Suprewicz L et al., “Recombinant human plasma gelsolin reverses increased permeability of the
    blood-brain barrier induced by the spike protein of the SARS-CoV-2 virus,” J Neuroinflammation 2022, 19, 1: 282. doi: https://doi.org/10.1186/s12974-022-02642-4
  34. Vargas-Castro R et al., “Calcitriol prevents SARS-CoV spike-induced inflammation in human
    trophoblasts through downregulating ACE2 and TMPRSS2 expression,” J Steroid Biochem Mol
    Biol 2025, 245: 106625. doi: https://doi.org/10.1016/j.jsbmb.2024.106625
  35. Visvabharathy L et al., “Case report: Treatment of long COVID with a SARS-CoV-2 antiviral and IL-6
    blockade in a patient with rheumatoid arthritis and SARS-CoV-2 antigen persistence,” Front. Med.
    2022, 9 (Sec. Infectious Diseases – Surveillance). doi: https://doi.org/10.3389/fmed.2022.1003103
  36. Yonker LM et al., “Multisystem inflammatory syndrome in children is driven by zonulin-dependent
    loss of gut mucosal barrier,” J Clin Invest. 2021, 131, 14: e149633. doi:
    https://doi.org/10.1172/JCI149633
  37. Youn JY et al., “Therapeutic application of estrogen for COVID-19: Attenuation of SARS-CoV-2 spike
    protein and IL-6 stimulated, ACE2-dependent NOX2 activation, ROS production and MCP-1
    upregulation in endothelial cells,” Redox Biol. 2021, 46: 102099. doi:
    https://doi.org/10.1016/j.redox.2021.102099
  38. Yu J et al., “Direct activation of the alternative complement pathway by SARS-CoV-2 spike proteins is
    blocked by factor D inhibition,” Blood 2020, 136, 18: 2080–2089. doi:
    https://doi.org/10.1182/blood.2020008248

HH. Toll-like receptors (TLRs)

  1. Aboudounya MM and RJ Heads, “COVID-19 and Toll-Like Receptor 4 (TLR4): SARS-CoV-2 May Bind
    and Activate TLR4 to Increase ACE2 Expression, Facilitating Entry and Causing Hyperinflammation,”
    Mediators Inflamm. 2021: 8874339. doi: https://doi.org/10.1155/2021/8874339
  2. Burnett FN et al., “SARS-CoV-2 Spike Protein Intensifies Cerebrovascular Complications in Diabetic
    hACE2 Mice through RAAS and TLR Signaling Activation,” Int. J. Mol. Sci. 2023, 24, 22: 16394.
    doi: https://doi.org/10.3390/ijms242216394
  3. Carnevale R et al., “Toll-Like Receptor 4-Dependent Platelet-Related Thrombosis in SARS-CoV-2
    Infection,” Circ. Res. 2023, 132, 3: 290– 305. doi: https://doi.org/10.1161/CIRCRESAHA.122.321541
  4. Corpetti C et al., “Cannabidiol inhibits SARS-Cov-2 spike (S) protein-induced cytotoxicity and
    inflammation through a PPARγ-dependent TLR4/NLRP3/Caspase-1 signaling suppression in Caco-2
    cell line,” Phytother. Res. 2021, 35, 12: 6893–6903. doi: https://doi.org/10.1002/ptr.7302
  5. Fontes-Dantas FL, “SARS-CoV-2 Spike Protein Induces TLR4-Mediated Long- Term Cognitive
    Dysfunction Recapitulating Post-COVID-19 Syndrome in Mice,” Cell Reports 2023, 42, 3: 112189, doi:
    https://doi.org/10.1016/j.celrep.2023.112189
  6. Khan S et al., “SARS-CoV-2 Spike Protein Induces Inflammation via TLR2-Dependent Activation of the
    NF-κB Pathway,” eLife 2021, 10: e68563. doi: https://doi.org/10.7554/elife.68563
  7. Kim MJ et al., “The SARS-CoV-2 spike protein induces lung cancer migration and invasion in a TLR2-
    dependent manner,” Cancer Commun (London) 2023, 44, 2: 273–277.
    doi: https://doi.org/10.1002/cac2.12485
  8. Kircheis R and O Planz, “Could a Lower Toll-like Receptor (TLR) and NF-κB Activation Due to a
    Changed Charge Distribution in the Spike Protein Be the Reason for the Lower Pathogenicity of
    Omicron?” Int. J. Mol. Sci. 2022, 23, 11: 5966. doi: https://doi.org/10.3390/ijms23115966
  9. Loh JT et al., “Dok3 restrains neutrophil production of calprotectin during TLR4 sensing of SARS-CoV-
    2 spike protein,” Front. Immunol. 2022, 13 (Sec. Molecular Innate Immunity). doi:
    https://doi.org/10.3389/fimmu.2022.996637
  10. Segura-Villalobos D et al., “Jacareubin inhibits TLR4-induced lung inflammatory response caused by
    the RBD domain of SARS-CoV-2 Spike protein,” Pharmacol. Rep. 2022, 74: 1315–1325. doi:
    https://doi.org/10.1007/s43440-022-00398-5
  11. Sirsendu J et al., “Cell-Free Hemoglobin Does Not Attenuate the Ebects of SARS-CoV-2 Spike Protein
    S1 Subunit in Pulmonary Endothelial Cells,” Int. J. Mol. Sci., 2021, 22, 16: 9041. doi:
    https://doi.org/10.3390/ijms22169041
  12. Sung PS et al., “CLEC5A and TLR2 Are Critical in SARS-CoV-2-Induced NET Formation and Lung
    Inflammation,” J. Biomed. Sci. 2022, 29, 52. doi: https://doi.org/10.1186/s12929-022-00832-z
  13. Zaki H and S Khan, “SARS-CoV-2 spike protein induces inflammatory molecules through TLR2 in
    macrophages and monocytes,” J. Immunol. 2021, 206 (1_supplement): 62.07. doi:
    https://doi.org/10.4049/jimmunol.206.Supp.62.07
  14. Zaki H and S Khan, “TLR2 senses spike protein of SARS-CoV-2 to trigger inflammation,” J.
    Immunol. 2022, 208 (1_Supplement): 125.30. doi:
    https://doi.org/10.4049/jimmunol.208.Supp.125.30
  15. Zhao Y et al., “SARS-CoV-2 spike protein interacts with and activates TLR4,” Cell Res. 2021, 31: 818–doi: https://doi.org/10.1038/s41422-021-00495-9

Listado Completo

  1. Abdi A et al., “Biomed Interaction of SARS-CoV-2 with cardiomyocytes: Insight into the underlying molecular mechanisms of cardiac injury and pharmacotherapy,” Pharmacother. 2022, 146: doi: 10.1016/j.biopha.2021.112518
  2. Aboudounya MM and RJ Heads, “COVID-19 and Toll-Like Receptor 4 (TLR4): SARS-CoV-2 May Bind and Activate TLR4 to Increase ACE2 Expression, Facilitating Entry and Causing Hyperinflammation,” Mediators Inflamm. 2021, 8874339. doi:
    https://doi.org/10.1155/2021/8874339
  3. Acevedo-Whitehouse K and R Bruno, “Potential health risks of mRNA-based vaccine therapy: A hypothesis,” Med. Hypotheses 2023, 171: 111015. doi:
    https://doi.org/10.1016/j.mehy.2023.111015
  4. Ahn WM et al., “SARS-CoV-2 Spike Protein Stimulates Macropinocytosis in Murine and Human Macrophages via PKC-NADPH Oxidase Signaling,” Antioxidants 2024, 13, 2: 175.
    doi: https://doi.org/10.3390/antiox13020175
  5. Ait-Belkacem I et al., “SARS-CoV-2 spike protein induces a diberential monocyte activation that may contribute to age bias in COVID-19 severity,” Sci. Rep. 2022, 12: 20824. doi: https://doi.org/10.1038/s41598-022-25259-2
  6. Aksenova AY et al., “The increased amyloidogenicity of Spike RBD and pH-dependent binding to ACE2 may contribute to the transmissibility and pathogenic properties of SARS-CoV-2 omicron as suggested by in silico study,” Int. J. Mol. Sci. 2022, 23, 21: 13502. doi: https://doi.org/10.3390/ijms232113502
  7. Al-Kuraishy HM et al., “Changes in the Blood Viscosity in Patients With SARS-CoV-2 Infection,” Front. Med. 2022, 9: 876017. doi: 10.3389/fmed.2022.876017
  8. Al-Kuraishy HM et al., “Hemolytic anemia in COVID-19,” Ann. Hematol. 2022, 101: 1887–1895. doi: 10.1007/s00277-022-04907-7
  9. Albornoz EA et al., “SARS-CoV-2 drives NLRP3 inflammasome activation in human microglia through spike protein,” Mol. Psychiatr. 2023, 28: 2878–2893. doi: https://doi.org/10.1038/s41380-022-01831-0
  10. Almehdi AM et al., “SARS-CoV-2 Spike Protein: Pathogenesis, Vaccines, and Potential Therapies,” Infection 2021, 49, 5: 855–876. doi: https://doi.org/10.1007/s15010-021-01677-8
  11. Angeli F et al., “COVID-19, vaccines and deficiency of ACE2 and other angiotensinases. Closing the loop on the ‘Spike ebect’,” Eur J. Intern. Med. 2022, 103: 23–28. doi:10.1016/j.ejim.2022.06.015
  12. Angeli F et al., “The spike ebect of acute respiratory syndrome coronavirus 2 and coronavirus
    disease 2019 vaccines on blood pressure,” Eur. J. Intern. Med. 2022, 109: 12-21. doi:
    10.1016/j.ejim.2022.12.004
  13. Ao Z et al., “SARS-CoV-2 Delta spike protein enhances the viral fusogenicity and inflammatory
    cytokine production,” iScience 2022, 25, 8: 104759. doi: 10.1016/j.isci.2022.104759
  14. Appelbaum K et al., “SARS-CoV-2 spike-dependent platelet activation in COVID-19 vaccineinduced
    thrombocytopenia,” Blood Adv. 2022, 6: 2250–2253. doi:
    10.1182/bloodadvances.2021005050
  15. Arjsri P et al., “Hesperetin from root extract of Clerodendrum petasites S. Moore inhibits SARSCoV-
    2 spike protein S1 subunit-induced Nlrp3 inflammasome in A549 lung cells via modulation of
    the Akt/Mapk/Ap-1 pathway,” Int. J. Mol. Sci. 2022, 23, 18: 10346. doi:
    https://doi.org/10.3390/ijms231810346
  16. Asandei A et al., “Non-Receptor-Mediated Lipid Membrane Permeabilization by the SARS-CoV-2
    Spike Protein S1 Subunit,” ACS Appl. Mater. Interfaces 2020, 12, 50: 55649–55658. doi:
    https://doi.org/10.1021/acsami.0c17044
  17. Avolio E et al., “The SARS-CoV-2 Spike Protein Disrupts Human Cardiac Pericytes Function
    through CD147 Receptor-Mediated Signalling: A Potential Non-infective Mechanism of COVID-19
    Microvascular Disease,” Clin. Sci. 2021, 135, 24: 2667–2689, doi:
    https://doi.org/10.1042/CS20210735
  18. Baldari CT et al., “Emerging Roles of SARS-CoV-2 Spike-ACE2 in Immune Evasion and
    Pathogenesis,” Trends Immunol. 2023, 44, 6. doi: https://doi.org/10.1016/j.it.2023.04.001
  19. Balzanelli MG et al., “The Role of SARS-CoV-2 Spike Protein in Long-term Damage of Tissues and
    Organs, the Underestimated Role of Retrotransposons and Stem Cells, a Working Hypothesis,”
    Endocr Metab Immune Disord Drug Targets 2025, 25, 2: 85-98. doi:
    10.2174/0118715303283480240227113401
  20. Bansal S et al., “Cutting Edge: Circulating Exosomes with COVID Spike Protein Are Induced by
    BNT162b2 (Pfizer-BioNTech) Vaccination prior to Development of Antibodies: A Novel Mechanism
    for Immune Activation by mRNA Vaccines,” J. Immunol. 2021, 207, 10: 2405–2410. doi:
    https://doi.org/10.4049/jimmunol.2100637
  21. Barhoumi T et al., “SARS-CoV-2 coronavirus Spike protein-induced apoptosis, inflammatory, and
    oxidative stress responses in THP-1-like-macrophages: potential role of angiotensin-converting
    enzyme inhibitor (perindopril),” Front Immunol. 2021, 12: 728896. doi:
    https://doi.org/10.3389/fimmu.2021.728896
  22. Barreda D et al., “SARS-CoV-2 Spike Protein and Its Receptor Binding Domain Promote a
    Proinflammatory Activation Profile on Human Dendritic Cells,” Cells 2021, 10, 12: 3279. doi:
    https://doi.org/10.3390/cells10123279
  23. Baumeier C et al., “Intramyocardial Inflammation after COVID-19 Vaccination: An
    Endomyocardial Biopsy-Proven Case Series,” Int. J. Mol. Sci. 2022, 23: 6940. doi:
    https://doi.org/10.3390/ijms23136940
  24. Bellavite P et al., “Immune response and molecular mechanisms of cardiovascular adverse
    ebects of spike proteins from SARS-coV-2 and mRNA vaccines,” Biomedicines 2023, 11, 2: 451.
    doi: https://doi.org/10.3390/biomedicines11020451
  25. Bellucci M et al., “Post-SARS-CoV-2 infection and post-vaccine-related neurological
    complications share clinical features and the same positivity to anti-ACE2 antibodies,” Front.
    Immunol. 2024, 15 (Sec. Multiple Sclerosis and Neuroimmunology). doi:
    https://doi.org/10.3389/fimmu.2024.1398028
  26. Bhargavan B and GD Kanmogne, “SARS-CoV-2 spike proteins and cell–cell communication
    inhibits TFPI and induces thrombogenic factors in human lung microvascular endothelial cells
    and neutrophils: implications for COVID-19 coagulopathy pathogenesis,” Int. J. Mol. Sci. 2022, 23,
    18: 10436. doi: https://doi.org/10.3390/ijms231810436
  27. Bhattacharyya S and JK Tobacman, “SARS-CoV-2 spike protein-ACE2 interaction increases
    carbohydrate sulfotransferases and reduces N-acetylgalactosamine-4-sulfatase by p38 MAPK,”
    Signal Transduct Target Ther 2024, 9, 39. doi: https://doi.org/10.1038/s41392-024-01741-3
  28. Biancatelli RMLC et al., “The SARS-CoV-2 spike protein subunit S1 induces COVID-19-like acute
    lung injury in Kappa18-hACE2 transgenic mice and barrier dysfunction in human endothelial
    cells,” Am. J. Physiol. Lung Cell. Mol. Physiol. 2021, 321, L477–L484. doi:
    https://doi.org/10.1152/ajplung.00223.2021
  29. Biering SB et al., “SARS-CoV-2 Spike Triggers Barrier Dysfunction and Vascular Leak via Integrins
    and TGF-β Signaling,” Nat. Commun. 2022, 13: 7630. doi: https://doi.org/10.1038/s41467-022-
    34910-5
  30. Bocquet-Garcon A, “Impact of the SARS-CoV-2 Spike Protein on the Innate Immune System: A
    Review,” Cureus 2024, 16, 3: e57008. doi: 10.7759/cureus.57008
  31. Boretti A, “PQQ Supplementation and SARS-CoV-2 Spike Protein-Induced Heart
    Inflammation,” Nat. Prod. Commun. 2022, 17, 1934578×221080929. doi:
    https://doi.org/10.1177/1934578X221080929
  32. Boros LG et al., “Long-lasting, biochemically modified mRNA, and its frameshifted recombinant
    spike proteins in human tissues and circulation after COVID-19 vaccination,” Pharmacol Res
    Perspect 2024, 12, 3: e1218. doi: https://doi.org/10.1002/prp2.1218
  33. Bortolotti D et al., “SARS-CoV-2 Spike 1 Protein Controls Natural Killer Cell Activation via the HLAE/
    NKG2A Pathway,” Cells 2020, 9, 9: 1975. doi: https://doi.org/10.3390/cells9091975
  34. Boschi C et al., “SARS-CoV-2 Spike Protein Induces Hemagglutination: Implications for COVID-19
    Morbidities and Therapeutics and for Vaccine Adverse Ebects,” Int. J. Biol. Macromol. 2022, 23,
    24: 15480. doi: https://doi.org/10.3390/ijms232415480
  35. Brady M et al., “Spike protein multiorgan tropism suppressed by antibodies targeting SARS-CoV-
    2,” Comm. Biol. 2021, 4, 1318. doi: https://doi.org/10.1038/s42003-021-02856-x
  36. Braga L et al., “Drugs that inhibit TMEM16 proteins block SARS-CoV-2 spike-induced syncytia,”
    Nature 2021, 594: 88–93. doi: https://doi.org/10.1038/s41586-021-03491-6
  37. Buoninfante A et al., “Myocarditis associated with COVID-19 vaccination,” npj Vaccines 2024, doi: https://doi.org/10.1038/s41541-024-00893-1
  38. Burkhardt A, “Pathology Conference: Vaccine-Induced Spike Protein Production in the Brain,
    Organs etc., now Proven,” Report24.news. 2022, https://report24.news/pathologie-konferenzimpfinduzierte-spike-produktion-in-gehirn-u-a-organen-nun-erwiesen/
  39. Burnett FN et al., “SARS-CoV-2 Spike Protein Intensifies Cerebrovascular Complications in
    Diabetic hACE2 Mice through RAAS and TLR Signaling Activation,” Int. J. Mol. Sci. 2023, 24, 22: doi: https://doi.org/10.3390/ijms242216394
  40. Buzhdygan TP et al., “The SARS-CoV-2 Spike Protein Alters Barrier Function in 2D Static and 3D
    Microfluidic in-Vitro Models of the Human Blood-Brain Barrier,” Neurobiol. Dis. 2020, 146, 105131.
    doi: https://doi.org/10.1016/j.nbd.2020.105131
  41. Bye AP et al., “Aberrant glycosylation of anti-SARS-CoV-2 spike IgG is a prothrombotic stimulus for
    platelets,” Blood 2021, 138, 6: 1481–9. doi: https://doi.org/10.1182/blood.2021011871
  42. Cao JB et al., “Mast cell degranulation-triggered by SARS-CoV-2 induces tracheal-bronchial
    epithelial inflammation and injury,” Virol. Sin. 2024, 39, 2: 309-318. doi:
    https://doi.org/10.1016/j.virs.2024.03.001
  43. Cao S et al., “Spike Protein Fragments Promote Alzheimer’s Amyloidogenesis,” ACS Appl. Mater.
    Interfaces 2023, 15, 34: 40317-40329. doi: https://doi.org/10.1021/acsami.3c09815
  44. Cao X et al., “Spike protein of SARS-CoV-2 activates macrophages and contributes to induction of
    acute lung inflammation in male mice,” FASEB J. 2021, 35, e21801. doi:
    https://doi.org/10.1096/fj.202002742RR
  45. Cao X et al., “The SARS-CoV-2 spike protein induces long-term transcriptional perturbations of
    mitochondrial metabolic genes, causes cardiac fibrosis, and reduces myocardial contractile in
    obese mice,” Mol. Metab. 2023, 74, 101756. doi: https://doi.org/10.1016/j.molmet.2023.101756
  46. Caohuy H et al., “Inflammation in the COVID-19 airway is due to inhibition of CFTR signaling by
    the SARS-CoV-2 spike protein,” Sci. Rep. 2024, 14: 16895. doi: https://doi.org/10.1038/s41598-
    024-66473-4
  47. Carnevale R et al., “Toll-Like Receptor 4-Dependent Platelet-Related Thrombosis in SARS-CoV-2
    Infection,” Circ. Res. 2023, 132, 3: 290– 305, doi:
    https://doi.org/10.1161/CIRCRESAHA.122.321541
  48. Cattin-Ortolá J et al., “Sequences in the cytoplasmic tail of SARS-CoV-2 Spike facilitate
    expression at the cell surface and syncytia formation,” Nat Commun 2021, 12, 1: 5333. doi:
    https://doi.org/10.1038/s41467-021-25589-1
  49. Chang MH et al., “SARS-CoV-2 Spike Protein 1 Causes Aggregation of α-Synuclein via Microglia-
    Induced Inflammation and Production of Mitochondrial ROS: Potential Therapeutic Applications
    of Metformin,” Biomedicines 2024, 12, 6: 1223. doi:
    https://doi.org/10.3390/biomedicines12061223
  50. Chaves JCS et al., “Diberential Cytokine Responses of APOE3 and APOE4 Blood–brain Barrier Cell
    Types to SARS-CoV-2 Spike Proteins,” J. Neuroimmune Pharmacol. 2024, 19, 22. doi:
    https://doi.org/10.1007/s11481-024-10127-9
  51. Cheng MH et al., “Superantigenic character of an insert unique to SARS-CoV-2 spike supported by
    skewed TCR repertoire in patients with hyperinflammation,” Proc Natl Acad Sci 2020, 117: 25254–doi: https://doi.org/10.1073/pnas.201072211
  52. Cheung CCL et al., “Residual SARS-CoV-2 viral antigens detected in GI and hepatic tissues from
    five recovered patients with COVID-19,” Gut 2022, 71, 1: 226–9. doi:
    https://doi.org/10.1136/gutjnl-2021-324280
  53. Chiok K et al., “Proinflammatory Responses in SARS-CoV-2 and Soluble Spike Glycoprotein S1
    Subunit Activated Human Macrophages,” Viruses 2023, 15, 3: 754.
    doi: https://doi.org/10.3390/v15030754
  54. Chittasupho C et al., “Inhibition of SARS-CoV-2-Induced NLRP3 Inflammasome-Mediated Lung
    Cell Inflammation by Triphala-Loaded Nanoparticle Targeting Spike Glycoprotein S1,”
    Pharmaceutics 2024, 16, 6: 751. https://doi.org/10.3390/pharmaceutics16060751
  55. Chittasupho C et al., “Targeting spike glycoprotein S1 mediated by NLRP3 inflammasome
    machinery and the cytokine releases in A549 lung epithelial cells by
    nanocurcumin,” Pharmaceuticals (Basel) 2023, 16, 6: 862. doi:
    https://doi.org/10.3390/ph16060862
  56. Choi JY et al., “SARS-CoV-2 spike S1 subunit protein-mediated increase of beta-secretase 1
    (BACE1) impairs human brain vessel cells,” Biochem. Biophys. Res. Commun. 2022, 625, 20: 66- doi: https://doi.org/10.1016/j.bbrc.2022.07.113
  57. Clemens DJ et al., “SARS-CoV-2 spike protein-mediated cardiomyocyte fusion may contribute to
    increased arrhythmic risk in COVID-19,” PLoS One 2023, 18, 3: e0282151.
    doi: https://doi.org/10.1371/journal.pone.0282151
  58. Clough E et al., “Mitochondrial Dynamics in SARS-COV2 Spike Protein Treated Human Microglia:
    Implications for Neuro-COVID,” Journal of Neuroimmune Pharmacology 2021, 16, 4: 770–784. doi:
    https://doi.org/10.1007/s11481-021-10015-6
  59. Colmenero I et al., “SARS-CoV-2 endothelial infection causes COVID-19 chilblains:
    histopathological, immunohistochemical and ultrastructural study of seven paediatric cases,” Br
    J Dermatol. 2020, 183: 729-737. doi: https://doi.org/10.1111/bjd.19327/
  60. Coly M, et al., “Subacute monomelic radiculoplexus neuropathy following Comirnaty(c) (Pfizer-
    BioNTech COVID-19) vaccination: A case report,” Revue Neurologique 2023, 179, 6: 636-639. doi:
    https://doi.org/10.1016/j.neurol.2023.02.063
  61. Corpetti C et al., “Cannabidiol inhibits SARS-Cov-2 spike (S) protein-induced cytotoxicity and
    inflammation through a PPARγ-dependent TLR4/NLRP3/Caspase-1 signaling suppression in
    Caco-2 cell line,” Phytother. Res. 2021, 35, 12: 6893–6903. doi: https://doi.org/10.1002/ptr.7302
  62. Correa Y et al., “SARS-CoV-2 spike protein removes lipids from model membranes and interferes
    with the capacity of high-density lipoprotein to exchange lipids,” J. Colloid Interface
    Sci. 2021, 602: 732-739. doi: https://doi.org/10.1016/j.jcis.2021.06.056
  63. Cory TJ et al., “Metformin Suppresses Monocyte Immunometabolic Activation by SARS-CoV-2
    Spike Protein Subunit 1,” Front. Immunol. 2021, 12 (Sec. Cytokines and Soluble Mediators in
    Immunity): 733921. doi: https://doi.org/10.3389/fimmu.2021.733921
  64. Cosentino M and Franca Marino, “Understanding the Pharmacology of COVID- 19 mRNA
    Vaccines: Playing Dice with the Spike?” Int. J. Mol. Sci. 2022, 23, 18: 10881. doi:
    https://doi.org/10.3390/ijms231810881
  65. Cossenza LC et al., “Inhibitory ebects of SARS-CoV-2 spike protein and BNT162b2 vaccine on
    erythropoietin-induced globin gene expression in erythroid precursor cells from patients with β-
    thalassemia,” Exp. Hematol. 2024, 129, 104128. doi:
    https://doi.org/10.1016/j.exphem.2023.11.002
  66. Craddock V et al., “Persistent circulation of soluble and extracellular vesicle-linked Spike protein
    in individuals with postacute sequelae of COVID-19,” J Med. Virol. 2023, 95, 2: e28568. doi:
    https://doi.org/10.1002/jmv.28568
  67. Das T et al., “N-glycosylation of the SARS-CoV-2 spike protein at Asn331 and Asn343 is involved in
    spike-ACE2 binding, virus entry, and regulation of IL-6,” Microbiol. Immunol. 2024, 68, 5: 165-178.
    doi: https://doi.org/10.1111/1348-0421.13121
  68. De Michele M et al., “Evidence of SARS-CoV-2 Spike Protein on Retrieved Thrombi from COVID-19
    Patients,” Journal of Hematology Oncology 2022, 15, 108. doi: https://doi.org/10.1186/s13045-
    022-01329-w
  69. De Michele M et al., “Vaccine-induced immune thrombotic thrombocytopenia: a possible
    pathogenic role of ChAdOx1 nCoV-19 vaccine-encoded soluble SARS-CoV-2 spike protein,”
    Haematologica 2022, 107, 7: 1687–92. doi: https://doi.org/10.3324/haematol.2021.280180
  70. De Sousa PMB et al., “Fatal Myocarditis following COVID-19 mRNA Immunization: A Case Report
    and Diberential Diagnosis Review,” Vaccines 2024, 12, 2: 194.
    doi: https://doi.org/10.3390/vaccines12020194
  71. Del Re A et al., “Intranasal delivery of PEA-producing Lactobacillus paracasei F19 alleviates SARSCoV-
    2 spike protein-induced lung injury in mice,” Transl. Med. Commun. 2024, 9, 9. doi:
    https://doi.org/10.1186/s41231-024-00167-x
  72. Del Re A et al., “Ultramicronized Palmitoylethanolamide Inhibits NLRP3 Inflammasome
    Expression and Pro-Inflammatory Response Activated by SARS-CoV-2 Spike Protein in Cultured
    Murine Alveolar Macrophages,” Metabolites 2021, 11, 9: 592. doi:
    https://doi.org/10.3390/metabo11090592
  73. Delgado JF et al., “SARS-CoV-2 spike protein vaccine-induced immune imprinting reduces
    nucleocapsid protein antibody response in SARS-CoV-2 infection,” J. Immunol. Res. 2022: doi: https://doi.org/10.1155/2022/8287087
  74. DeOre BJ et al., “SARS-CoV-2 Spike Protein Disrupts Blood-Brain Barrier Integrity via RhoA
    Activation,” J Neuroimmune Pharmacol. 2021, 16, 4: 722-728. doi:
    https://doi.org/10.1007/s11481-021-10029-0
  75. Devaux CA and L. Camoin-Jau, “Molecular mimicry of the viral spike in the SARS-CoV-2 vaccine
    possibly triggers transient dysregulation of ACE2, leading to vascular and coagulation dysfunction
    similar to SARS-CoV-2 infection,” Viruses 2023, 15, 5: 1045. doi:
    https://doi.org/10.3390/v15051045
  76. Dissook S et al., “Luteolin-rich fraction from Perilla frutescens seed meal inhibits spike
    glycoprotein S1 of SARS-CoV-2-induced NLRP3 inflammasome lung cell inflammation via
    regulation of JAK1/STAT3 pathway: A potential anti-inflammatory compound against
    inflammation-induced long-COVID,” Front. Med. 2023, 9: 1072056. doi:
    https://doi.org/10.3389/fmed.2022.1072056
  77. Duarte C, “Age-dependent ebects of the recombinant spike protein/SARS-CoV-2 on the M-CSFand
    IL-34-diberentiated macrophages in vitro,” Biochem. Biophys. Res. Commun. 2021, 546: 97– doi: https://doi.org/10.1016/j.bbrc.2021.01.104
  78. Erdogan MA, “Prenatal SARS-CoV-2 Spike Protein Exposure Induces Autism-Like Neurobehavioral
    Changes in Male Neonatal Rats,” J Neuroimmune Pharmacol. 2023, 18, 4 :573-591. doi:
    10.1007/s11481-023-10089-4
  79. Erickson MA et al., “Blood-brain barrier penetration of non-replicating SARS-CoV-2 and S1
    variants of concern induce neuroinflammation which is accentuated in a mouse model of
    Alzheimer’s disease,” Brain Behav Immun 2023, 109: 251-268. doi:
    https://doi.org/10.1016/j.bbi.2023.01.010
  80. Fajloun Z et al., “SARS-CoV-2 or Vaccinal Spike Protein can Induce Mast Cell Activation Syndrome
    (MCAS),” Infect Disord Drug Targets, 2025, 25, 1: e300424229561. doi:
    10.2174/0118715265319896240427045026
  81. Ferrer MD et al., “Nitrite Attenuates the In Vitro Inflammatory Response of Immune Cells to the
    SARS-CoV-2 S Protein without Interfering in the Antioxidant Enzyme Activation,” Int. J. Mol.
    Sci. 2024, 25, 5: 3001. https://doi.org/10.3390/ijms25053001
  82. Fertig TE et al., “Beyond the injection site: identifying the cellular targets of mRNA vaccines,” J Cell
    Ident 2024, 3, 1. doi: 10.47570/joci.2024.004
  83. Fertig TE et al., “Vaccine mRNA Can Be Detected in Blood at 15 Days Post
    Vaccination,” Biomedicines 2022, 10, 7: 1538. doi:
    https://doi.org/10.3390/biomedicines10071538
  84. Fontes-Dantas FL, “SARS-CoV-2 Spike Protein Induces TLR4-Mediated Long- Term Cognitive
    Dysfunction Recapitulating Post-COVID-19 Syndrome in Mice,” Cell Reports 2023, 42, 3: 112189.
    doi: https://doi.org/10.1016/j.celrep.2023.112189
  85. Forsyth CB et al., “The SARS-CoV-2 S1 spike protein promotes MAPK and NF-kB activation in
    human lung cells and inflammatory cytokine production in human lung and intestinal epithelial
    cells,” Microorganisms 2022, 10, 10: 1996.
    doi: https://doi.org/10.3390/microorganisms10101996
  86. Forte E, “Circulating spike protein may contribute to myocarditis after COVID-19 vaccination,”
    Nat. Cardiovasc. Res. 2023, 2: 100. doi: https://doi.org/10.1038/s44161-023-00222-0
  87. Frank MG et al., “Exploring the immunogenic properties of SARS-CoV-2 structural proteins:
    PAMP:TLR signaling in the mediation of the neuroinflammatory and neurologic sequelae of
    COVID-19,” Brain Behav Immun 2023, 111. doi: https://doi.org/10.1016/j.bbi.2023.04.009
  88. Frank MG et al., “SARS-CoV-2 Spike S1 Subunit Induces Neuroinflammatory, Microglial and
    Behavioral Sickness Responses: Evidence of PAMP-Like Properties,” Brain Behav. Immun. 2022,
    100: 267277. doi: https://doi.org/10.1016/j.bbi.2021.12.007
  89. Frank MG et al., “SARS-CoV-2 S1 subunit produces a protracted priming of the
    neuroinflammatory, physiological, and behavioral responses to a remote immune challenge: A
    role for corticosteroids,” Brain Behav. Immun. 2024, 121: 87-103. doi:
    https://doi.org/10.1016/j.bbi.2024.07.034
  90. Fraser ME at al., “SARS-CoV-2 Spike Protein and Viral RNA Persist in the Lung of Patients With
    Post-COVID Lung Disease (abstract),” Am J Respir Crit Care Med 2024, 209: A4193. doi:
    https://doi.org/10.1164/ajrccm-conference.2024.209.1_MeetingAbstracts.A4193
  91. Freeborn J, “Misfolded Spike Protein Could Explain Complicated COVID-19 Symptoms,” Medical
    News Today, May 26, 2022, https://www.medicalnewstoday.com/articles/misfolded-spikeprotein-
    could-explain-complicated-covid-19-symptoms
  92. Freitas RS et al., “SARS-CoV-2 Spike antagonizes innate antiviral immunity by targeting interferon
    regulatory factor 3,” Front Cell Infect Microbiol. 2021, 11: 789462. doi:
    https://doi.org/10.3389/fcimb.2021.789462
  93. Frühbeck G et al., “FNDC4 and FNDC5 reduce SARS-CoV-2 entry points and spike glycoprotein
    S1-induced pyroptosis, apoptosis, and necroptosis in human adipocytes,” Cell Mol Immunol.
    2021, 18, 10: 2457–9. doi: https://doi.org/10.1038/s41423-021-00762-0
  94. Gamblicher T et al., “SARS-CoV-2 spike protein is present in both endothelial and eccrine cells of
    a chilblain-like skin lesion,” J Eur Acad Dermatol Venereol. 2020, 1, 10: e187-e189. doi:
    https://doi.org/10.1111/jdv.16970
  95. Gao X et al., “Spike-Mediated ACE2 Down-Regulation Was Involved in the Pathogenesis of SARSCoV-
    2 Infection,” Journal of Infection 2022, 85, 4: 418–427, doi: 10.1016/j.jinf.2022.06.030
  96. Gasparello J et al., “Sulforaphane inhibits the expression of interleukin-6 and interleukin-8
    induced in bronchial epithelial IB3-1 cells by exposure to the SARS-CoV-2 Spike protein,”
    Phytomedicine 2021, 87: 153583. doi: https://doi.org/10.1016/j.phymed.2021.153583
  97. Gawaz A et al., “SARS-CoV-2–Induced Vasculitic Skin Lesions Are Associated with Massive Spike
    Protein Depositions in Autophagosomes,” J Invest Dermatol. 2024, 144, 2: 369-377.e4. doi:
    https://doi.org/10.1016/j.jid.2023.07.018
  98. Ghazanfari D et al., “Mechanistic insights into SARS-CoV-2 spike protein induction of the
    chemokine CXCL10,” Sci. Rep. 2024, 14: 11179. doi: https://doi.org/10.1038/s41598-024-61906-6
  99. Goh D et al., “Case report: Persistence of residual antigen and RNA of the SARS-CoV-2 virus in
    tissues of two patients with long COVID,” Front. Immunol. 2022, 13 (Sec. Viral Immunology). doi:
    https://doi.org/10.3389/fimmu.2022.939989
  100. Golob-Schwarzl N et al., “SARS-CoV-2 spike protein functionally interacts with primary human
    conjunctival epithelial cells to induce a pro-inflammatory response,” Eye 2022, 36: 2353–5. doi:
    https://doi.org/10.1038/s41433-022-02066-7
  101. Gracie NP et al., “Cellular signalling by SARS-CoV-2 spike protein,” Microbiology Australia 2024,
    45, 1: 13-17. doi: https://doi.org/10.1071/MA24005
  102. Greenberger JS et al., “SARS-CoV-2 Spike Protein Induces Oxidative Stress and Senescence in
    Mouse and Human Lung,” In Vivo 2024, 38, 4: 1546-1556; doi:
    https://doi.org/10.21873/invivo.13605
  103. Grishma K and Das Sarma, “The Role of Coronavirus Spike Protein in Inducing Optic Neuritis in
    Mice: Parallels to the SARS-CoV-2 Virus,” J Neuroophthalmol 2024, 44, 3: 319-329. Doi:
    10.1097/WNO.0000000000002234
  104. Grobbelaar LM et al., “SARS-CoV-2 Spike Protein S1 Induces Fibrin(ogen) Resistant to Fibrinolysis:
    Implications for Microclot Formation in COVID-19,” Biosicence Reports 2021, 41, 8:
    BSR20210611. doi: https://doi.org/10.1042/BSR20210611
  105. Gu T et al., “Cytokine Signature Induced by SARS-CoV-2 Spike Protein in a Mouse Model,” Front.
    Immunol. 2021 (Sec. Inflammation). doi: https://doi.org/10.3389/fimmu.2020.621441
  106. Guo X et al., “Regulation of proinflammatory molecules and tissue factor by SARS-CoV-2 spike
    protein in human placental cells: implications for SARS-CoV-2 pathogenesis in pregnant women,”
    Front Immunol 2022, 13: 876555–876555. https://doi.org/10.3389/fimmu.2022.876555
  107. Guo Y and V Kanamarlapudi, “Molecular Analysis of SARS-CoV-2 Spike Protein-Induced
    Endothelial Cell Permeability and vWF Secretion,” Int. J. Mol. Sci. 2023, 24, 6: https://doi.org/10.3390/ijms24065664
  108. Gussow AB et al., “Genomic Determinants of Pathogenicity in SARS-CoV-2 and Other Human
    Coronaviruses,” PNAS 2020, 117, 26: 15193–15199. doi:
    https://doi.org/10.1073/pnas.2008176117
  109. Halma MTJ et al., “Exploring autophagy in treating SARS-CoV-2 spike protein-related pathology,”
    Endocrinol Metab (EnM) 2024, 14: 100163. doi: https://doi.org/10.1016/j.endmts.2024.100163
  110. Halma MTJ et al., “Strategies for the Management of Spike Protein-Related Pathology,”
    Microorganisms 2023, 11, 5: 1308, doi: https://doi.org/10.3390/microorganisms11051308
  111. Hano S et al., “A case of persistent, confluent maculopapular erythema following a COVID-19
    mRNA vaccination is possibly associated with the intralesional spike protein expressed by
    vascular endothelial cells and eccrine glands in the deep dermis,” J Dermatol 2023, 50, 9: 1208- doi: https://doi.org/10.1111/1346-8138.16816
  112. Heath SP et al., “SARS-CoV-2 Spike Protein Exacerbates Thromboembolic Cerebrovascular
    Complications in Humanized ACE2 Mouse Model,” Transl Stroke Res. 2024. doi:
    https://doi.org/10.1007/s12975-024-01301-5
  113. Heil M, “Self-DNA driven inflammation in COVID-19 and after mRNA-based vaccination: lessons
    for non-COVID-19 pathologies,” Front. Immunol., 2023, 14. doi:
    https://doi.org/10.3389/fimmu.2023.1259879
  114. Huang X et al., “Sars-Cov-2 Spike Protein-Induced Damage of hiPSC-Derived
    Cardiomyocytes,” Adv. Biol. 2022, 6, 7: e2101327. doi: https://doi.org/10.1002/adbi.202101327
  115. Hulscher N et al., “Autopsy findings in cases of fatal COVID-19 vaccine-induced myocarditis,” ESC
    Heart Failure 2024. doi: https://doi.org/10.1002/ehf2.14680
  116. Huynh TV et al., “Spike Protein Impairs Mitochondrial Function in Human Cardiomyocytes:
    Mechanisms Underlying Cardiac Injury in COVID-19,” Cells 2023, 12, 877. doi:
    https://doi.org/10.3390/cells12060877
  117. Huynh TV et al., “Spike Protein of SARS-CoV-2 Activates Cardiac Fibrogenesis through NLRP3
    Inflammasomes and NF-κB Signaling,” Cells 2024, 13, 16: 1331:
    doi: https://doi.org/10.3390/cells13161331
  118. Iba T and JH Levy, “The roles of platelets in COVID-19-associated coagulopathy and vaccineinduced
    immune thrombotic thrombocytopenia,” Trends Cardiovasc Med. 2022, 32, 1: 1-9. doi:
    https://doi.org/10.1016/j.tcm.2021.08.012
  119. Idrees D and Vijay Kumar, “SARS-CoV-2 Spike Protein Interactions with Amyloidogenic Proteins:
    Potential Clues to Neurodegeneration,” Biochem Biophys Res Commun. 2021, 554 : 94–98, doi:
    https://doi.org/10.1016/j.bbrc.2021.03.100
  120. Imig JD, “SARS-CoV-2 spike protein causes cardiovascular disease independent of viral infection,”
    Clin Sci (Lond) 2022, 136, 6: 431–434. doi: https://doi.org/10.1042/CS20220028
  121. Irrgang P et al., “Class switch toward noninflammatory, spike-specific IgG4 antibodies after
    repeated SARS-CoV-2 mRNA vaccination,” Sci. Immunol. 2022, 8, 79. doi:
    10.1126/sciimmunol.ade2798
  122. Jana S et al., “Cell-free hemoglobin does not attenuate the ebects of SARS-CoV-2 spike protein S1
    subunit in pulmonary endothelial cells,” Int. J. Mol. Sci. 2021, 22, 16: 9041. doi:
    https://doi.org/10.3390/ijms22169041
  123. Jiang Q et al., “SARS-CoV-2 spike S1 protein induces microglial NLRP3-dependent
    neuroinflammation and cognitive impairment in mice,” Exp. Neurol. 2025, 383: 115020. doi:
    https://doi.org/10.1016/j.expneurol.2024.115020
  124. Johnson EL et al., “The S1 spike protein of SARS-CoV-2 upregulates the ERK/MAPK signaling
    pathway in DC-SIGN-expressing THP-1 cells,” Cell Stress Chaperones 2024, 29, 2: 227-234. doi:
    https://doi.org/10.1016/j.cstres.2024.03.002
  125. Jugler C et al, “SARS-CoV-2 Spike Protein-Induced Interleukin 6 Signaling Is Blocked by a Plant-
    Produced Anti-Interleukin 6 Receptor Monoclonal Antibody,” Vaccines 2021, 9, 11: https://doi.org/10.3390/vaccines9111365
  126. Kammala AK et al., “In vitro mRNA-S maternal vaccination induced altered immune regulation at
    the maternal-fetal interface,” Am. J. Reprod. Immunol. 2024, 91, 5: e13861. doi:
    https://doi.org/10.1111/aji.13861
  127. Kanduc D, “From Anti-SARS-CoV-2 Immune Responses to COVID-19 via Molecular Mimicry,”
    Antibodies 2020, 9, 3: 33. doi: https://doi.org/10.3390/antib9030033
  128. Kanduc D and Y Shoenfeld, “Molecular mimicry between SARS-CoV-2 spike glycoprotein and
    mammalian proteomes: implications for the vaccine,” Immunol Res 2020, 68: 310-313. doi:
    https://doi.org/10.1007/s12026-020-09152-6
  129. Karrow NA et al., “Maternal COVID-19 Vaccination and Its Potential Impact on Fetal and Neonatal
    Development,” Vaccines 2021, 9: 1351. doi: https://doi.org/10.3390/vaccines9111351
  130. Karwaciak I et al., “Nucleocapsid and Spike Proteins of the Coronavirus Sars-Cov-2 Induce Il6 in
    Monocytes and Macrophages—Potential Implications for Cytokine Storm
    Syndrome,” Vaccines 2021, 9(1), 54: 1–10. doi: https://doi.org/10.3390/vaccines9010054
  131. Kato Y et al., “TRPC3-Nox2 Protein Complex Formation Increases the Risk of SARS-CoV-2 Spike
    Protein-Induced Cardiomyocyte Dysfunction through ACE2 Upregulation,” Int. J. Mol.
    Sci. 2023, 24, 1: 102. doi: https://doi.org/10.3390/ijms24010102
  132. Kawano H et al., “Fulminant Myocarditis 24 Days after Coronavirus Disease Messenger
    Ribonucleic Acid Vaccination,” Intern. Med. 2022, 61, 15: 2319-2325. doi:
    https://doi.org/10.2169/internalmedicine.9800-22
  133. Ken W et al., “Low dose radiation therapy attenuates ACE2 depression and inflammatory
    cytokines induction by COVID-19 viral spike protein in human bronchial epithelial cells,” Int J
    Radiat Biol. 2022, 98, 10: 1532-1541. doi: https://doi.org/10.1080/09553002.2022.2055806
  134. Kent SJ et al., “Blood Distribution of SARS-CoV-2 Lipid Nanoparticle mRNA Vaccine in Humans,”
    ACS Nano 2024, 18, 39: 27077-27089. doi: https://doi.org/10.1021/acsnano.4c11652
  135. Khaddaj-Mallat R et al., “SARS-CoV-2 deregulates the vascular and immune functions of brain
    pericytes via Spike protein,” Neurobiol. Dis. 2021, 161, 105561. doi:
    https://doi.org/10.1016/j.nbd.2021.105561
  136. Khan S et al., “SARS-CoV-2 Spike Protein Induces Inflammation via TLR2-Dependent Activation of
    the NF-κB Pathway,” eLife 2021, 10: e68563. doi: https://doi.org/10.7554/elife.68563
  137. Kim ES et al., “Spike Proteins of SARS-CoV-2 Induce Pathological Changes in Molecular Delivery
    and Metabolic Function in the Brain Endothelial Cells,” Viruses, 2021, 13, 10. doi:
    https://doi.org/10.3390/v13102021
  138. Kim MJ et al., “The SARS-CoV-2 spike protein induces lung cancer migration and invasion in a
    TLR2-dependent manner,” Cancer Commun (London), 2023, 44, 2: 273–277.
    doi: https://doi.org/10.1002/cac2.12485
  139. Kim SY et al., “Characterization of heparin and severe acute respiratory syndrome-related
    coronavirus 2 (SARS-CoV-2) spike glycoprotein binding interactions,” Antivir Res. 2020, 181: doi: https://doi.org/10.1016/j.antiviral.2020.104873
  140. Kircheis R, “Coagulopathies after Vaccination against SARS-CoV-2 May Be Derived from a
    Combined Ebect of SARS-CoV-2 Spike Protein and Adenovirus Vector-Triggered Signaling
    Pathways,” Int. J. Mol. Sci. 2021, 22, 19: 10791. https://doi.org/10.3390/ijms221910791
  141. Kircheis R and O Planz, “Could a Lower Toll-like Receptor (TLR) and NF-κB Activation Due to a
    Changed Charge Distribution in the Spike Protein Be the Reason for the Lower Pathogenicity of
    Omicron?” Int. J. Mol. Sci. 2022, 23, 11: 5966. doi: https://doi.org/10.3390/ijms23115966
  142. Ko CJ et al., “Discordant anti-SARS-CoV-2 spike protein and RNA staining in cutaneous perniotic
    lesions suggests endothelial deposition of cleaved spike protein,” J. Cutan Pathol 2021, 48, 1: 47– doi: https://doi.org/10.1111/cup.13866
  143. Kowarz E et al., “Vaccine-induced COVID-19 mimicry syndrome,” eLife 2022, 11: e74974.
    doi: https://doi.org/10.7554/eLife.74974
  144. Krauson AM et al., “Duration of SARS-CoV-2 mRNA vaccine persistence and factors associated
    with cardiac involvement in recently vaccinated patients,” npj Vaccines, 8, 141. doi:
    https://doi.org/10.1038/s41541-023-00742-7
  145. Kucia M et al., “An evidence that SARS-Cov-2/COVID-19 spike protein (SP) damages
    hematopoietic stem/progenitor cells in the mechanism of pyroptosis in Nlrp3 inflammasomedependent
    manner,” Leukemia 2021, 35: 3026-3029. doi: https://doi.org/10.1038/s41375-021-
    01332-z
  146. Kuhn CC et al., “Direct Cryo-ET observation of platelet deformation induced by SARS-CoV-2 spike
    protein,” Nat. Commun. (2023) 14, 620. doi: https://doi.org/10.1038/s41467-023-36279-5
  147. Kulkoviene G et al., “Diberential Mitochondrial, Oxidative Stress and Inflammatory Responses to
    SARS-CoV-2 Spike Protein Receptor Binding Domain in Human Lung Microvascular, Coronary
    Artery Endothelial and Bronchial Epithelial Cells,” Int. J. Mol. Sci. 2024, 25, 6: 3188.
    doi: https://doi.org/10.3390/ijms25063188
  148. Kumar N et al., “SARS-CoV-2 spike protein S1-mediated endothelial injury and pro-inflammatory
    state Is amplified by dihydrotestosterone and prevented by mineralocorticoid
    antagonism,” Viruses 2021, 13, 11: 2209. Doi: https://doi.org/10.3390/v13112209
  149. Kyriakopoulos AM et al., “Mitogen Activated Protein Kinase (MAPK) Activation, p53, and
    Autophagy Inhibition Characterize the Severe Acute Respiratory Syndrome Coronavirus 2 (SARSCoV-
    2) Spike Protein Induced Neurotoxicity,” Cureus 2022, 14, 12: e32361. doi:
    10.7759/cureus.32361
  150. Lazebnik Y, “Cell fusion as a link between the SARS-CoV-2 spike protein, COVID-19 complications,
    and vaccine side ebects,” Oncotarget 2021, 12, 25: 2476-2488. doi:
    https://doi.org/10.18632/oncotarget.28088
  151. Lehmann KJ, “Impact of SARS-CoV-2 Spikes on Safety of Spike-Based COVID-19 Vaccinations,”
    Immunome Res. 2024, 20, 2: 1000267. doi: 10.35248/1745-7580.24.20.267
  152. Lehmann KJ, “SARS-CoV-2-Spike Interactions with the Renin-Angiotensin-Aldosterone System –
    Consequences of Adverse Reactions of Vaccination,” J Biol Today’s World 2023, 12/4: 001-013.
    https://doi.org/10.31219/osf.io/27g5h
  153. Lehmann KJ, “Suspected Causes of the Specific Intolerance Profile of Spike-Based Covid-19
    Vaccines,” Med. Res. Arch 2024, 12, 9. doi: 10.18103/mra.v12i9.5704
  154. Lei Y et al., “SARS-CoV-2 Spike Protein Impairs Endothelial Function via Downregulation of ACE 2,”
    Circ. Res. 2021, 128, 9: 1323–1326. doi: https://doi.org/10.1161/CIRCRESAHA.121.318902
  155. Lesgard JF et al., “Toxicity of SARS-CoV-2 Spike Protein from the Virus and Produced from COVID-
    19 mRNA or Adenoviral DNA Vaccines,” Arch Microbiol Immun 2023, 7, 3: 121-138. doi:
    10.26502/ami.936500110
  156. Letarov AV et al., “Free SARS-CoV-2 Spike Protein S1 Particles May Play a Role in the Pathogenesis
    of COVID-19 Infection,” Biochemistry (Moscow) 2021, 86: 257–261. doi:
    https://doi.org/10.1134/S0006297921030032
  157. Li C. et al., “Intravenous Injection of Coronavirus Disease 2019 (COVID-19) MRNA Vaccine Can
    Induce Acute Myopericarditis in Mouse Model,” Clin. Infect. Dis. 2022, 74, 11: 1933-1950. doi:
    https://doi.org/10.1093/cid/ciab707
  158. Li F et al., “SARS-CoV-2 Spike Promotes Inflammation and Apoptosis Through Autophagy by ROSSuppressed PI3K/AKT/mTOR Signaling,” Biochim Biophys Acta BBA – Mol Basis Dis 2021, 1867: doi: https://doi.org/10.1016/j.bbadis.2021.166260
  159. Li K et al., “SARS-CoV-2 Spike protein promotes vWF secretion and thrombosis via endothelial
    cytoskeleton-associated protein 4 (CKAP4),” Signal Transduct Targ Ther 2022, 7, 332. doi:
    https://doi.org/10.1038/s41392-022-01183-9
  160. Li T et al., “Platelets Mediate Inflammatory Monocyte Activation by SARS-CoV-2 Spike Protein,” J.
    Clin. Invest. 2022, 132, 4: e150101. doi: 10.1172/JCI150101
  161. Li Z et al., “SARS-CoV-2 pathogenesis in the gastrointestinal tract mediated by Spike-induced
    intestinal inflammation,” Precis. Clin. Med. 2024, 7, 1: pbad034. doi:
    https://doi.org/10.1093/pcmedi/pbad034
  162. Liang S et al., “SARS-CoV-2 spike protein induces IL-18-mediated cardiopulmonary inflammation
    via reduced mitophagy,” Signal Transduct Target Ther 2023, 8, 103. doi:
    https://doi.org/10.1038/s41392-023-01368-w
  163. Lin X et al., “Transplacental transmission of the COVID-19 vaccine messenger RNA: evidence from
    placental, maternal, and cord blood analyses postvaccination,” Am J Obstet Gynecol 2024, 92, 4:
    e13934. doi: https://doi.org/10.1111/aji.13934
  164. Lin Z, “More than a key—the pathological roles of SARS-CoV-2 spike protein in COVID-19 related
    cardiac injury,” Sports Med Health Sci 2023, 6, 3: 209-220.
    doi: https://doi.org/10.1016/j.smhs.2023.03.004
  165. Liu T et al., “RS-5645 attenuates inflammatory cytokine storm induced by SARS-CoV-2 spike
    protein and LPS by modulating pulmonary microbiota,” Int J Biol Sci. 2021, 17, 13: 3305–3319.
    doi: 10.7150/ijbs.63329
  166. Liu X et al., “SARS-CoV-2 spike protein-induced cell fusion activates the cGAS-STING pathway
    and the interferon response,” Sci Signal. 2022, 15, 729: eabg8744. doi: 10.1126/scisignal.abg8744
  167. Loh D, “The potential of melatonin in the prevention and attenuation of oxidative hemolysis and
    myocardial injury from cd147 SARS-CoV-2 spike protein receptor binding,” Melatonin Research
    2020, 3, 3: 380-416. doi: https://doi.org/10.32794/mr11250069
  168. Loh JT et al., “Dok3 restrains neutrophil production of calprotectin during TLR4 sensing of SARSCoV-
    2 spike protein,” Front. Immunol. 2022, 13 (Sec. Molecular Innate Immunity). doi:
    https://doi.org/10.3389/fimmu.2022.996637
  169. Lu J and PD Sun, “High abinity binding of SARS-CoV-2 spike protein enhances ACE2
    carboxypeptidase activity,” J. Biol. Chem 2020, 295, 52: p18579-18588. doi:
    10.1074/jbc.RA120.015303
  170. Luchini A et al., “Lipid bilayer degradation induced by SARS-CoV-2 spike protein as revealed by
    neutron reflectometry,” Sci. Rep. 2021, 11: 14867. doi: https://doi.org/10.1038/s41598-021-
    93996-x
  171. Luo Y et al., “SARS-Cov-2 spike induces intestinal barrier dysfunction through the interaction
    between CEACAM5 and Galectin-9,” Front. Immunol., 2024, 15. doi:
    https://doi.org/10.3389/fimmu.2024.1303356
  172. Lykhmus O et al., “Immunization with 674–685 fragment of SARS-Cov-2 spike protein induces
    neuroinflammation and impairs episodic memory of mice,” Biochem. Biophys. Res.
    Commun. 2022, 622: 57–63. doi: https://doi.org/10.1016/j.bbrc.2022.07.016
  173. Ma G et al., “SARS-CoV-2 Spike protein S2 subunit modulates γ-secretase and enhances amyloid-
    β production in COVID-19 neuropathy,” Cell Discov 2022, 8, 99. doi:
    https://doi.org/10.1038/s41421-022-00458-3
  174. Maeda Y et al., “Diberential Ability of Spike Protein of SARS-CoV-2 Variants to Downregulate
    ACE2,” Int. J. Mol. Sci. 2024, 25, 2: 1353. doi: https://doi.org/10.3390/ijms25021353
  175. Magen E et al., “Clinical and Molecular Characterization of a Rare Case of BNT162b2 mRNA
    COVID-19 Vaccine-Associated Myositis,” Vaccines 2022, 10: 1135. doi:
    https://doi.org/10.3390/vaccines10071135
  176. Magro C et al., “Disruption of the blood-brain barrier is correlated with spike endocytosis by ACE2 endothelia in the CNS microvasculature in fatal COVID-19. Scientific commentary on ‘Detection
    of blood-brain barrier disruption in brains of patients with COVID-19, but no evidence of brain
    penetration by SARS-CoV-2’,” Acta Neuropathol. 2024, 147, 1: 47. doi:
    https://doi.org/10.1007/s00401-023-02681-y
  177. Magro C et al., “The histologic and molecular correlates of COVID-19 vaccine-induced changes in
    the skin,” Clin. Dermatol. 2021, 39, 6: 966-984. doi:
    https://doi.org/10.1016/j.clindermatol.2021.07.011
  178. Marrone L et al., “Tirofiban prevents the ebects of SARS-CoV-2 spike protein on macrophage
    activation and endothelial cell death,” Heliyon 2024, 10, 15: e35341. doi:
    10.1016/j.heliyon.2024.e35341
  179. Martin-Navarro L et al., “In situ detection of vaccine mRNA in the cytoplasm of hepatocytes during
    COVID-19 vaccine-related hepatitis,” J. Hepatol. 2023, 78, 1: e20-e22.
    doi: 10.1016/j.jhep.2022.08.039
  180. Martinez-Marmol R et al., “SARS-CoV-2 infection and viral fusogens cause neuronal and glial
    fusion that compromises neuronal activity,” Sci. Adv. 2023, 9, 23. doi: 10.1126/sciadv.adg2248
  181. Matschke J et al., “Neuropathology of patients with COVID-19 in Germany: a post-mortem case
    series,” Lancet Neurol. 2020, 19, 11: 919-929. doi: 10.1016/S1474-4422(20)30308-2
  182. Matsuzawa Y et al., “Impact of Renin–Angiotensin–Aldosterone System Inhibitors on COVID-19,”
    Hypertens Res. 2022, 45, 7: 1147–1153. doi: https://doi.org/10.1038/s41440-022-00922-3
  183. Maugeri M et al.. “Linkage between endosomal escape of LNP-mRNA and loading into EVs for
    transport to other cells,” Nat Commun 2019, 10: 4333. doi: https://doi.org/10.1038/s41467-019-
    12275-6
  184. Maugeri N et al., “Unconventional CD147-Dependent Platelet Activation Elicited by SARS-CoV-2
    in COVID-19,” J. Thromb. Haemost. 2021, 20, 2: 434–448. doi: https://doi.org/10.1111/jth.15575
  185. Mayordomo-Colunga J et al., “SARS-CoV-2 spike protein in intestinal cells of a patient with
    coronavirus disease 2019 multisystem inflammatory syndrome,” J Pediatr. 2022, 243: 214-18e215.
    doi: https://doi.org/10.1016/j.jpeds.2021.11.058
  186. Mercado-Gómez M et al., “The spike of SARS-CoV-2 promotes metabolic rewiring in
    hepatocytes,” Commun. Biol. 2022, 5, 827. doi: https://doi.org/10.1038/s42003-022-03789-9
  187. Meyer K et al., “SARS-CoV-2 Spike Protein Induces Paracrine Senescence and Leukocyte
    Adhesion in Endothelial Cells,” J. Virol. 2021, 95, e0079421. doi:
    https://doi.org/10.1128/jvi.00794-21
  188. Miller GM et al., “SARS-CoV-2 and SARS-CoV-2 Spike protein S1 subunit Trigger Proinflammatory
    Response in Macrophages in the Absence of Productive Infection,” J. Immunol. 2023, 210
    (1_Supplement): 71.30. doi: https://doi.org/10.4049/jimmunol.210.Supp.71.30
  189. Mishra R and AC Banerjea, “SARS-CoV-2 Spike targets USP33-IRF9 axis via exosomal miR-148a to
    activate human microglia,” Front. Immunol. 2021, 12: 656700. doi:
    https://doi.org/10.3389/fimmu.2021.656700
  190. Mörz M, “A Case Report: Multifocal Necrotizing Encephalitis and Myocarditis after BNT162b2
    mRNA Vaccination against COVID-19,” Vaccines 2022, 10, 10: 1651. doi:
    https://doi.org/10.3390/vaccines10101651
  191. Moutal A et al., “SARS-CoV-2 Spike protein co-opts VEGF-A/Neuropilin-1 receptor signaling to
    induce analgesia,” Pain 2020, 162, 1: 243–252. doi: 10.1097/j.pain.0000000000002097
  192. Munavilli GG et al., “COVID-19/SARS-CoV-2 virus spike protein-related delayed inflammatory
    reaction to hyaluronic acid dermal fillers: a challenging clinical conundrum in diagnosis and
    treatment,” Arch. Dermatol. Res. 2022, 314: 1-15. doi: https://doi.org/10.1007/s00403-021-02190-
    6
  193. Nahalka J, “1-L Transcription of SARS-CoV-2 Spike Protein S1 Subunit,” Int. J. Mol. Sci. 2024, 25, 8: doi: https://doi.org/10.3390/ijms25084440
  194. Nascimento RR et al., “SARS-CoV-2 Spike protein triggers gut impairment since mucosal barrier to
    innermost layers: From basic science to clinical relevance,” Mucosal Immunol. 2024, 17, 4: 565- doi: https://doi.org/10.1016/j.mucimm.2024.03.00
  195. Nguyen V, “The Spike Protein of SARS-CoV-2 Impairs Lipid Metabolism and Increases
    Susceptibility to Lipotoxicity: Implication for a Role of Nrf2,” Cells 2022, 11, 12: 1916. doi:
    https://doi.org/10.3390/cells11121916
  196. Niu C et al., “SARS-CoV-2 spike protein induces the cytokine release syndrome by stimulating T
    cells to produce more IL-2,” Front. Immunol. 2024, 15: 1444643. doi:
    https://doi.org/10.3389/fimmu.2024.1444643
  197. Norris B et al., “Evaluation of Glutathione in Spike Protein of SARS-CoV-2 Induced
    Immunothrombosis and Cytokine Dysregulation,” Antioxidants 2024, 13, 3: 271.
    doi: https://doi.org/10.3390/antiox13030271
  198. Nunez-Castilla J et al., “Potential autoimmunity resulting from molecular mimicry between SARSCoV-
    2 spike and human proteins,” Viruses 2022, 14, 7: 1415. doi:
    https://doi.org/10.3390/v14071415
  199. Nuovo JG et al., “Endothelial Cell Damage Is the Central Part of COVID-19 and a Mouse Model
    Induced by Injection of the S1 Subunit of the Spike Protein,” Ann. Diagn. Pathol. 2021, 51, 151682.
    doi: https://doi.org/10.1016/j.anndiagpath.2020.151682
  200. Nyein CM et al., “Severe de novo liver injury after Moderna vaccination – not always autoimmune
    hepatitis,” J. Hepatol. 2022, 77, 2: 556-558. Doi: 10.1016/j.jhep.2022.03.041
  201. Nyström S, “Amyloidogenesis of SARS-CoV-2 Spike Protein,” J. Am. Chem. Soc. 2022, 144, 8945– doi: https://doi.org/10.1021/jacs.2c03925
  202. Ogata AF et al., “Circulating Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2)
    Vaccine Antigen Detected in the Plasma of mRNA-1273 Vaccine Recipients,” Clin. Infect. Dis.
    2022, 75, 4: 715–718. doi: https://doi.org/10.1093/cid/ciab465
  203. Ogata AF et al., “Ultra-Sensitive Serial Profiling of SARS-CoV-2 Antigens and Antibodies in Plasma
    to Understand Disease Progression in COVID-19 Patients with Severe Disease,” Clin. Chem. 2020,
    66, 12: 1562-1572. doi: https://doi.org/10.1093/clinchem/hvaa213
  204. Oh J et al., “SARS-CoV-2 Spike Protein Induces Cognitive Deficit and Anxiety-Like Behavior in
    Mouse via Non-cell Autonomous Hippocampal Neuronal Death,” Scientific Reports 2022, 12, doi: https://doi.org/10.1038/s41598-022-09410-7
  205. Oka N et al., “SARS-CoV-2 S1 protein causes brain inflammation by reducing intracerebral
    acetylcholine production,” iScience 2023, 26, 6: 106954. doi: 10.1016/j.isci.2023.106954
  206. Olajide OA et al., “Induction of Exaggerated Cytokine Production in Human Peripheral Blood
    Mononuclear Cells by a Recombinant SARS-CoV-2 Spike Glycoprotein S1 and Its Inhibition by
    Dexamethasone,” Inflammation 2021, 44: 1865–1877. doi: https://doi.org/10.1007/s10753-021-
    01464-5
  207. Olajide OA et al., “SARS-CoV-2 spike glycoprotein S1 induces neuroinflammation in BV-2
    microglia,” Mol. Neurobiol. 2022, 59: 445-458. doi: https://doi.org/10.1007/s12035-021-02593-6
  208. Onnis A et al., “SARS-CoV-2 Spike protein suppresses CTL-mediated killing by inhibiting immune
    synapse assembly,” J Exp Med 2023, 220, 2: e20220906. doi:
    https://doi.org/10.1084/jem.20220906
  209. Palestra F et al., “SARS-CoV-2 Spike Protein Activates Human Lung Macrophages,” Int. J. Mol.
    Sci. 2023, 24, 3: 3036. doi: https://doi.org/10.3390/ijms24033036
  210. Pallas RM, “Innate and adaptative immune mechanisms of COVID-19 vaccines. Serious adverse
    events associated with SARS-CoV-2 vaccination: A systematic review,” Vacunas (English ed.)
    2024, 25, 2: 285.e1-285.e94. doi: https://doi.org/10.1016/j.vacune.2024.05.002
  211. Panigrahi S et al., “SARS-CoV-2 Spike Protein Destabilizes Microvascular Homeostasis,” Microbiol
    Spectr. 2021, 9, 3: e0073521. doi: https://doi.org/10.1128/Spectrum.00735-21
  212. Parcial ALN et al., “SARS-CoV-2 Is Persistent in Placenta and Causes Macroscopic,
    Histopathological, and Ultrastructural Changes,” Viruses 2022, 14, 9: 1885.
    doi: https://doi.org/10.3390/v14091885
  213. Park C et al., “Murine alveolar Macrophages Rapidly Accumulate intranasally Administered SARSCoV-
    2 Spike Protein leading to neutrophil Recruitment and Damage,” Elife 2024, 12: RP86764. doi:
    https://doi.org/10.7554/eLife.86764.3
  214. Park YJ et al., “D-dimer and CoV-2 spike-immune complexes contribute to the production of PGE2
    and proinflammatory cytokines in monocytes,” PLoS Pathog. 2022, 18, 4: e1010468. doi:
    https://doi.org/10.1371/journal.ppat.1010468
  215. Park YJ et al., “Pyrogenic and inflammatory mediators are produced by polarized M1 and M2
    macrophages activated with D-dimer and SARS-CoV-2 spike immune complexes,” Cytokine 2024,
    173: 156447. doi: https://doi.org/10.1016/j.cyto.2023.156447
  216. Parry PL et al., “‘Spikeopathy’: COVID-19 Spike Protein Is Pathogenic, from Both Virus and Vaccine
    mRNA,” Biomedicine 2023, 11, 8: 2287. doi: https://doi.org/10.3390/biomedicines11082287
  217. Passariello M et al., “Interactions of Spike-RBD of SARS-CoV-2 and Platelet Factor 4: New Insights
    in the Etiopathogenesis of Thrombosis,” Int. J. Mol. Sci. 2021, 22, 16: 8562.
    doi: https://doi.org/10.3390/ijms22168562
  218. Pateev I et al., “Biodistribution of RNA Vaccines and of Their Products: Evidence from Human and
    Animal Studies,” Biomedicines 2024, 12, 1: 59.
    doi: https://doi.org/10.3390/biomedicines12010059
  219. Patra T et al., “SARS-CoV-2 spike protein promotes IL-6 trans-signaling by activation of
    angiotensin II receptor signaling in epithelial cells,” PLoS Pathog. 2020, 16: e1009128. doi:
    https://doi.org/10.1371/journal.ppat.1009128
  220. Patterson BK et al., “Persistence of SARS CoV-2 S1 Protein in CD16+ Monocytes in Post-Acute
    Sequelae of COVID-19 (PASC) up to 15 Months Post-Infection,” Front. Immunol. 12 (Sec. Viral
    Immunology). doi: https://doi.org/10.3389/fimmu.2021.746021
  221. Peluso MJ et al., “Plasma-based antigen persistence in the post-acute phase of COVID-19,”
    Lancet 2024, 24, 6: E345-E347. doi: 10.1016/S1473-3099(24)00211-1
  222. Peluso MJ et al., “SARS-CoV-2 and mitochondrial proteins in neural-derived exosomes of COVID-
    19,” Ann Neurol 2022, 91, 6: 772-781. doi: https://doi.org/10.1002/ana.26350
  223. Pence B, “Recombinant SARS-CoV-2 Spike Protein Mediates Glycolytic and Inflammatory
    Activation in Human Monocytes,” Innov Aging 2020, 4, sp. 1: 955. doi:
    https://doi.org/10.1093/geroni/igaa057.3493
  224. Perico L et al., “SARS-CoV-2 and the spike protein in endotheliopathy,” Trends Microbiol. 2024, 32,
    1: 53-67. doi: 10.1016/j.tim.2023.06.004
  225. Perico L et al., “SARS-CoV-2 Spike Protein 1 Activates Microvascular Endothelial Cells and
    Complement System Leading to Platelet Aggregation,” Front. Immunol. 2022, 13, 827146. doi:
    https://doi.org/10.3389/fimmu.2022.827146
  226. Petrlova J et al., “SARS-CoV-2 spike protein aggregation is triggered by bacterial
    lipopolysaccharide,” FEBS Lett. 2022, 596: 2566–2575. doi: https://doi.org/10.1002/1873-
    3468.14490
  227. Petrosino S and N Matende, “Elimination/Neutralization of COVID-19 Vaccine-Produced Spike
    Protein: Scoping Review,” Mathews Journal of Nutrition & Dietetics 2024, 7, 2. doi:
    https://doi.org/10.30654/MJND.10034
  228. Petrovszki D et al., “Penetration of the SARS-CoV-2 Spike Protein across the Blood-Brain Barrier,
    as Revealed by a Combination of a Human Cell Culture Model System and Optical
    Biosensing,” Biomedicines 2022, 10, 1: 188. doi: https://doi.org/10.3390/biomedicines10010188
  229. Petruk G et al., “SARS-CoV-2 spike protein binds to bacterial lipopolysaccharide and boosts
    proinflammatory activity,” J. Mol. Cell Biol. (2020) 12: 916-932. doi:
    https://doi.org/10.1093/jmcb/mjaa067
  230. Prieto-Villalobos J et al., “SARS-CoV-2 spike protein S1 activates Cx43 hemichannels and disturbs
    intracellular Ca2+ dynamics,” Biol Res. 2023, 56, 1: 56. doi: https://doi.org/10.1186/s40659-023-
    00468-9
  231. Puthia MTL et al., “Experimental model of pulmonary inflammation induced by SARS-CoV-2 spike
    protein and endotoxin,” ACS Pharmacol Transl Sci. 2022, 5, 3: 141–8. doi:
    https://doi.org/10.1021/acsptsci.1c00219
  232. Raghavan S et al., “SARS-CoV-2 Spike Protein Induces Degradation of Junctional Proteins That
    Maintain Endothelial Barrier Integrity,” Front. Cardiovasc. Med. 2021, 8, 687783. doi:
    https://doi.org/10.3389/fcvm.2021.687783
  233. Rahman M et al., “Diberential Ebect of SARS-CoV-2 Spike Glycoprotein 1 on Human Bronchial
    and Alveolar Lung Mucosa Models: Implications for Pathogenicity,” Viruses 2021, 13, 12: doi: https://doi.org/10.3390/v13122537
  234. Rajah MM et al., “SARS-CoV-2 Alpha, Beta, and Delta variants display enhanced spike-mediated
    syncytia formation,” EMBO J. 2021, 40: e108944. doi: https://doi.org/10.15252/embj.2021108944
  235. Ratajczak MZ et al., “SARS-CoV-2 Entry Receptor ACE2 Is Expressed on Very Small
    CD45- Precursors of Hematopoietic and Endothelial Cells and in Response to Virus Spike Protein
    Activates the Nlrp3 Inflammasome,” Stem Cell Rev Rep. 2021, 17, 1: 266-277. doi:
    https://doi.org/10.1007/s12015-020-10010-z
  236. Rhea EM et al., “The S1 protein of SARS-CoV-2 crosses the blood–brain barrier in mice,” Nature
    Neuroscience 2021, 24, 3: 368–378. doi: https://doi.org/10.1038/s41593-020-00771-8
  237. Rivas MN et al., “COVID-19–associated multisystem inflammatory syndrome in children (MIS-C):
    A novel disease that mimics toxic shock syndrome—the superantigen hypothesis,” J Allergy Clin
    Immunol 2021, 147, 1: 57-59. doi: 10.1016/j.jaci.2020.10.008
  238. Rivas MN et al., “Multisystem Inflammatory Syndrome in Children and Long COVID: The SARSCoV-
    2 Viral Superantigen Hypothesis,” Front Immunol. 2022, 13 (Sec. Molecular Innate Immunity)
    doi: https://doi.org/10.3389/fimmu.2022.941009
  239. Robles JP et al., “The Spike Protein of SARS-CoV-2 Induces Endothelial Inflammation through
    Integrin α5β1 and NF-κB Signaling,” J. Biol. Chem. 2022, 298, 3: 101695. doi:
    https://doi.org/10.1016/j.jbc.2022.101695
  240. Roden AC et al., “Comparison of In Situ Hybridization, Immunohistochemistry, and Reverse
    Transcription–Droplet Digital Polymerase Chain Reaction for Severe Acute Respiratory Syndrome
    Coronavirus 2 (SARS-CoV-2) Testing in Tissue,” Arch Pathol Lab Med 2021, 145, 7: 785–796. doi:
    https://doi.org/10.5858/arpa.2021-0008-SA
  241. Rodriguez Y et al., “Autoinflammatory and autoimmune conditions at the crossroad of COVID-19,”
    J. Autoimmun. 2020, 114: 102506. doi: https://doi.org/10.1016/j.jaut.2020.102506
  242. Rong Z et al., “Persistence of spike protein at the skull-meninges-brain axis may contribute to the
    neurological sequelae of COVID-19,” Cell Host Microbe 2024, 26: S1931-3128(24)00438-4. doi:
    10.1016/j.chom.2024.11.007
  243. Ropa J et al., “Human Hematopoietic Stem, Progenitor, and Immune Cells Respond Ex Vivo to
    SARS-CoV-2 Spike Protein,” Stem Cell Rev Rep. 2021, 17, 1: 253-265. doi:
    https://doi.org/10.1007/s12015-020-10056-z
  244. Rotoli BM et al., “Endothelial cell activation by SARS-CoV-2 spike S1 protein: A crosstalk between
    endothelium and innate immune cells,” Biomedicines 2021, 9, 9: 1220. doi:
    https://doi.org/10.3390/biomedicines9091220
  245. Roytenberg R et al., “Thymidine phosphorylase mediates SARS-CoV-2 spike protein enhanced
    thrombosis in K18-hACE2TG mice,” Thromb. Res. 2024, 244, 8: 109195. doi:
    10.1016/j.thromres.2024.109195
  246. Ruben ML et al., “The SARS-CoV-2 spike protein subunit S1 induces COVID-19-like acute lung
    injury in Κ18-hACE2 transgenic mice and barrier dysfunction in human endothelial cells,” Am J
    Physiol Lung Cell Mol Physiol. 2021, 321, 2: L477-L484.
    doi: https://doi.org/10.1152/ajplung.00223.2021
  247. Russo A, et al., “Implication of COVID-19 on Erythrocytes Functionality: Red Blood Cell
    Biochemical Implications and Morpho-Functional Aspects,” Int. J. Mol. Sci. 2022, 23, 4: 2171.
    doi: https://doi.org/10.3390/ijms23042171
  248. Ryu JK et al., “Fibrin drives thromboinflammation and neuropathology in COVID-19,” Nature 2024,
    633: 905-913. doi: https://doi.org/10.1038/s41586-024-07873-4
  249. Rzymski P and Andrzej Fal, “To aspirate or not to aspirate? Considerations for the COVID-19
    vaccines,” Pharmacol. Rep 2022, 74: 1223–1227. doi: https://doi.org/10.1007/s43440-022-00361-
    4
  250. Saadi F et al., “Spike glycoprotein is central to coronavirus pathogenesis-parallel between m-CoV
    and SARS-CoV-2,” Ann Neurosci. 2021, 28 (3-4): 201–218. doi:
    https://doi.org/10.1177/09727531211023755
  251. Sacco K et al., “Immunopathological signatures in multisystem inflammatory syndrome in
    children and pediatric COVID-19,” Nat. Med. 2022, 28: 1050-1062. doi:
    https://doi.org/10.1038/s41591-022-01724-3
  252. Samsudin S et al., “SARS-CoV-2 spike protein as a bacterial lipopolysaccharide delivery system in
    an overzealous inflammatory cascade,” J. Mol. Biol. 2022, 14, 9: mjac058.
    https://doi.org/10.1093/jmcb/mjac058
  253. Sandelius A et al., “Biodistribution of lipid nanoparticle, eGFP mRNA and translated protein
    following subcutaneous administration in mouse,” Bioanalysis 2024, 16, 14: 721-733. doi:
    https://doi.org/10.1080/17576180.2024.2360361
  254. Sano H et al., “A case of persistent, confluent maculopapular erythema following a COVID-19
    mRNA vaccination is possibly associated with the intralesional spike protein expressed by
    vascular endothelial cells and eccrine glands in the deep dermis,” J. Dermatol. 2023, 50: 1208– doi: https://doi.org/10.1111/1346-8138.16816
  255. Sano S et al., “SARS-CoV-2 spike protein found in the acrosyringium and eccrine gland of
    repetitive miliaria-like lesions in a woman following mRNA vaccination,” J. Dermatol. 2024, 51, 9:
    e293-e295. doi: https://doi.org/10.1111/1346-8138.17204
  256. Santonja C et al., “COVID-19 chilblain-like lesion: immunohistochemical demonstration of SARSCoV-
    2 spike protein in blood vessel endothelium and sweat gland epithelium in a polymerase
    chain reaction-negative patient,” Br J Dermatol. 2020, 183, 4: 778-780. doi:
    https://doi.org/10.1111/bjd.19338
  257. Satta S et al., “An engineered nano-liposome-human ACE2 decoy neutralizes SARS-CoV-2 Spike
    protein-induced inflammation in both murine and human macrophages,” Theranostics 2022, 12,
    6: 2639–2657. doi: 10.7150/thno.66831
  258. Sattar S et al., “Nuclear translocation of spike mRNA and protein is a novel feature of SARS-CoV-
    2,” 2023 Front. Microbiol. 2023, 14 (Sec. Virology). doi:
    https://doi.org/10.3389/fmicb.2023.1073789
  259. Scheim DE, “A Deadly Embrace: Hemagglutination Mediated by SARS-CoV-2 Spike Protein at its
    22 N-Glycosylation Sites, Red Blood Cell Surface Sialoglycoproteins, and Antibody,” Int. J. Mol.
    Sci. 2022, 23, 5, 2558. doi: https://doi.org/10.3390/ijms23052558
  260. Scheim DE et al., “Sialylated Glycan Bindings from SARS-CoV-2 Spike Protein to Blood and
    Endothelial Cells Govern the Severe Morbidities of COVID-19,” Int. J. Mol. Schi. 2023, 24,
    23:17039. doi: https://doi.org/10.3390/ijms242317039
  261. Scholkmann F and CA May, “COVID-19, post-acute COVID-19 syndrome (PACS, ‘long COVID’) and
    post-COVID-19 vaccination syndrome (PCVS, ‘post-COVIDvac-syndrome’): Similarities and
    diberences,” Pathol Res Pract. 2023, 246: 154497. doi: https://doi.org/10.1016/j.prp.2023.154497
  262. Schreckenberg R et al., “Cardiac side ebects of RNA-based SARS-CoV-2 vaccines: Hidden
    cardiotoxic ebects of mRNA-1273 and BNT162b2 on ventricular myocyte function and structure,”
    Br. J. Pharmacol. 2024, 181, 3: 345-361. doi: https://doi.org/10.1111/bph.16262
  263. Schroeder JT and AP Bieneman, “The S1 Subunit of the SARS-CoV-2 Spike protein activates
    human monocytes to produce cytokines linked to COVID-19: relevance to galectin-3,” Front
    Immunol. 2022, 13: 831763. doi: https://doi.org/10.3389/fimmu.2022.831763
  264. Schultheiss C et al., “Liquid biomarkers of macrophage dysregulation and circulating spike
    protein illustrate the biological heterogeneity in patients with post-acute sequelae of COVID-19,” J
    Med Virol 2023, 95, 1: e28364. doi: https://doi.org/10.1002/jmv.28364
  265. Segura-Villalobos D et al., “Jacareubin inhibits TLR4-induced lung inflammatory response caused
    by the RBD domain of SARS-CoV-2 Spike protein,” Pharmacol. Rep. 2022, 74: 1315–1325. doi:
    https://doi.org/10.1007/s43440-022-00398-5
  266. Semmarath W et al., “Cyanidin-3-O-glucoside and Peonidin-3-O-glucoside-Rich Fraction of Black
    Rice Germ and Bran Suppresses Inflammatory Responses from SARS-CoV-2 Spike Glycoprotein
    S1-Induction In Vitro in A549 Lung Cells and THP-1 Macrophages via Inhibition of the NLRP3
    Inflammasome Pathway,” Nutrients 2022, 14, 13: 2738. doi: https://doi.org/10.3390/nu14132738
  267. Sharma VK et al., “Nanocurcumin Potently Inhibits SARS-CoV-2 Spike Protein-Induced Cytokine
    Storm by Deactivation of MAPK/NF-κB Signaling in Epithelial Cells,” ACS Appl. Bio Mater. 2022, 5,
    2: 483–491. doi: https://doi.org/10.1021/acsabm.1c00874
  268. Shirato K and Takako Kizaki, “SARS-CoV-2 Spike Protein S1 Subunit Induces Pro-inflammatory
    Responses via Toll-Like Receptor 4 Signaling in Murine and Human Macrophages,” Heliyon 2021,
    7, 2: e06187. doi: https://doi.org/10.1016/j.heliyon.2021.e06187
  269. Singh N and Anuradha Bharara Singh, “S2 Subunit of SARS-nCoV-2 Interacts with Tumor
    Suppressor Protein p53 and BRCA: An in Silico Study,” Transl. Oncol. 2020, 13, 10: 100814, doi:
    https://doi.org/10.1016/j.tranon.2020.100814
  270. Singh RD, “The spike protein of sars-cov-2 induces heme oxygenase-1: pathophysiologic
    implications,” Biochim Biophys Acta, Mol Basis Dis 2022, 1868, 3: 166322. doi:
    https://doi.org/10.1016/j.bbadis.2021.166322
  271. Sirsendu J et al., “Cell-Free Hemoglobin Does Not Attenuate the Ebects of SARS-CoV-2 Spike
    Protein S1 Subunit in Pulmonary Endothelial Cells,” Int. J. Mol. Sci., 2021, 22, 16: 9041. doi:
    https://doi.org/10.3390/ijms22169041
  272. Soares CD et al., “Oral vesiculobullous lesions as an early sign of COVID-19:
    immunohistochemical detection of SARS-CoV-2 spike protein,” Br. J. Dermatol. 2021, 184, 1: e6.
    doi: https://doi.org/10.1111/bjd.19569
  273. Solis O et al., “The SARS-CoV-2 spike protein binds and modulates estrogen receptors,” Sci.
    Adv. 2022, 8, 48: eadd4150. doi: 10.1126/sciadv.add4150
  274. Stern B et al., “SARS-CoV-2 spike protein induces endothelial dysfunction in 3D engineered
    vascular networks,” J. Biomed. Mater. Res. A. 2023, 112, 4: 524-533. doi:
    https://doi.org/10.1002/jbm.a.37543
  275. Sui Y et al., “SARS-CoV-2 Spike Protein Suppresses ACE2 and Type I Interferon Expression in
    Primary Cells From Macaque Lung Bronchoalveolar Lavage,” Front. Immunol. 2021, 12. doi:
    https://doi.org/10.3389/fimmu.2021.658428
  276. Sun Q et al., “SARS-coV-2 spike protein S1 exposure increases susceptibility to angiotensin IIinduced
    hypertension in rats by promoting central neuroinflammation and oxidative
    stress,” Neurochem. Res. 2023, 48, 3016–3026. doi: https://doi.org/10.1007/s11064-023-03949-1
  277. Sung PS et al., “CLEC5A and TLR2 Are Critical in SARS-CoV-2-Induced NET Formation and Lung
    Inflammation,” J. Biomed. Sci. 2002, 29, 52. doi: https://doi.org/10.1186/s12929-022-00832-z
  278. Suprewicz L et al., “Blood-brain barrier function in response to SARS-CoV-2 and its spike
    protein,” Neurol. Neurochir Pol. 2023, 57: 14–25. doi: 10.5603/PJNNS.a2023.0014
  279. Suprewicz L et al., “Recombinant human plasma gelsolin reverses increased permeability of the
    blood-brain barrier induced by the spike protein of the SARS-CoV-2 virus,” J Neuroinflammation
    2022, 19, 1: 282, doi: https://doi.org/10.1186/s12974-022-02642-4
  280. Suzuki YJ et al., “SARS-CoV-2 spike protein-mediated cell signaling in lung vascular cells,” Vascul.
    Pharmacol. 2021, 137: 106823. doi: https://doi.org/10.1016/j.vph.2020.106823
  281. Suzuki YJ and SG Gychka, “SARS-CoV-2 Spike Protein Elicits Cell Signaling in Human Host Cells:
    Implications for Possible Consequences of COVID-19 Vaccines,” Vaccines 2021, 9, 1, 36.
    doi: https://doi.org/10.3390/vaccines9010036
  282. Swank Z, et al. “Persistent Circulating Severe Acute Respiratory Syndrome Coronavirus 2 Spike Is
    Associated With Post-acute Coronavirus Disease 2019 Sequelae,” Clin. Infect. Dis. 2023, 76, 3:
    e487–e490. doi: https://doi.org/10.1093/cid/ciac722
  283. Tetz G and Victor Tetz, “Prion-Like Domains in Spike Protein of SARS-CoV-2 Diber across Its
    Variants and Enable Changes in Abinity to ACE2,” Microorganisms 2022, 10, 2: 280, doi:
    https://doi.org/10.3390/microorganisms10020280
  284. Theobald SJ et al., “Long-lived macrophage reprogramming drives spike protein-mediated
    inflammasome activation in COVID-19,” EMBO Mol. Med. 2021, 13: e14150. doi:
    https://doi.org/10.15252/emmm.202114150
  285. Theoharides TC, “Could SARS-CoV-2 Spike Protein Be Responsible for Long-COVID Syndrome?”
    Mol. Neurobiol. 2022, 59, 3: 1850–1861. doi: https://doi.org/10.1007/s12035-021-02696-0
  286. Theoharides TC and P Conti, “Be Aware of SARS-CoV-2 Spike Protein: There Is More Than Meets
    the Eye,” J. Biol. Reg. Homeost. Agents 2021, 35, 3: 833–838 doi: 10.23812/THEO_EDIT_3_21
  287. Theuerkauf SA et al., “Quantitative assays reveal cell fusion at minimal levels of SARS-CoV-2 spike
    protein and fusion from without,” iScience 2021, 24, 3: 102170.
    doi: https://doi.org/10.1016/j.isci.2021.102170
  288. Tillman TS et al., “SARS-CoV-2 Spike Protein Downregulates Cell Surface alpha7nAChR through a
    Helical Motif in the Spike Neck,” ACS Chem. Neurosci. 2023, 14, 4: 689–698. doi:
    https://doi.org/10.1021/acschemneuro.2c00610
  289. Trougakos IP et al., “Adverse Ebects of COVID-19 mRNA Vaccines: The Spike Hypothesis,” Trends
    Mol. Med. 2022, 28, 7: 542–554. doi: 10.1016/j.molmed.2022.04.007
  290. Tyrkalska SD et al., “Diberential proinflammatory activities of spike proteins of SARS-CoV-2
    variants of concern,” Sci. Adv. 2022, 8, 37: eabo0732. doi: 10.1126/sciadv.abo0732
  291. Vargas-Castro R et al., “Calcitriol prevents SARS-CoV spike-induced inflammation in human
    trophoblasts through downregulating ACE2 and TMPRSS2 expression,” J Steroid Biochem Mol
    Biol 2025, 245: 106625. doi: https://doi.org/10.1016/j.jsbmb.2024.106625
  292. Vettori M et al., “Ebects of Diberent Types of Recombinant SARS-CoV-2 Spike Protein on
    Circulating Monocytes’ Structure,” Int. J. Mol. Sci. 2023, 24, 11: 9373.
    doi: https://doi.org/10.3390/ijms24119373
  293. Villacampa A et al., “SARS-CoV-2 S protein activates NLRP3 inflammasome and deregulates
    coagulation factors in endothelial and immune cells,” Cell Commun. Signal. 2024, 22, 38. doi:
    https://doi.org/10.1186/s12964-023-01397-6
  294. Visvabharathy L et al., “Case report: Treatment of long COVID with a SARS-CoV-2 antiviral and IL-6
    blockade in a patient with rheumatoid arthritis and SARS-CoV-2 antigen persistence,” Front. Med.
    2022, 9 (Sec. Infectious Diseases – Surveillance). doi:
    https://doi.org/10.3389/fmed.2022.1003103
  295. Vojdani A and D Kharrazian, “Potential antigenic cross-reactivity between SARS-CoV-2 and human
    tissue with a possible link to an increase in autoimmune diseases,” Clin Immunol. 2020, 217: doi: https://doi.org/10.1016/j.clim.2020.108480
  296. Vojdani A et al., “Reaction of Human Monoclonal Antibodies to SARS-CoV-2 Proteins With Tissue
    Antigens: Implications for Autoimmune Diseases,” Front. Immunol. 2021, 11 (Sec. Autoimmune
    and Autoinflammatory Disorders). doi: https://doi.org/10.3389/fimmu.2020.617089
  297. Wang J et al., “SARS-CoV-2 Spike Protein S1 Domain Accelerates α-Synuclein Phosphorylation
    and Aggregation in Cellular Models of Synucleinopathy,” Mol Neurobiol. 2024, 61, 4:2446-2458.
    doi: https://doi.org/10.1007/s12035-023-03726-9
  298. Wu H et al., “Molecular evidence suggesting the persistence of residual SARS-CoV-2 and immune
    responses in the placentas of pregnant patients recovered from COVID-19,” Cell Prolif. 2021, 54,
    9: e13091. doi: https://doi.org/10.1111/cpr.13091
  299. Wu ML et al., “Mast cell activation triggered by SARS-CoV-2 causes inflammation in brain
    microvascular endothelial cells and microglia,” Front. Cell. Infect. Microbiol., 2024, 14. doi:
    https://doi.org/10.3389/fcimb.2024.1358873
  300. Yamamoto M et al., “Persistent varicella zoster virus infection following mRNA COVID-19
    vaccination was associated with the presence of encoded spike protein in the lesion,” J. Cutan
    Immunol. Allergy. 2022:1–6. doi: https://doi.org/10.1002/cia2.12278
  301. Yeung-Luk BH et al., “SARS-CoV-2 infection alters mitochondrial and cytoskeletal function in
    human respiratory epithelial cells mediated by expression of spike protein,” mBio 2023, 14, 4:
    e00820-23. doi: https://doi.org/10.1128/mbio.00820-23
  302. Yilmaz A et al., “Diberential proinflammatory responses of colon epithelial cells to SARS-CoV-2
    spike protein and Pseudomonas aeruginosa lipopolysaccharide,” Turk J Biochem. 2024. doi:
    https://doi.org/10.1515/tjb-2024-0144
  303. Yonker LM et al., “Circulating Spike Protein Detected in Post–COVID-19 mRNA Vaccine
    Myocarditis,” Circulation 2023, 147, 11. doi:
    https://doi.org/10.1161/CIRCULATIONAHA.122.061025
  304. Yonker LM et al., “Multisystem inflammatory syndrome in children is driven by zonulin-dependent
    loss of gut mucosal barrier,” J Clin Invest. 2021, 131, 14: e149633. doi:
    https://doi.org/10.1172/JCI149633
  305. Youn JY et al., “Therapeutic application of estrogen for COVID-19: Attenuation of SARS-CoV-2
    spike protein and IL-6 stimulated, ACE2-dependent NOX2 activation, ROS production and MCP-1
    upregulation in endothelial cells,” Redox Biol. 2021, 46: 102099. doi:
    https://doi.org/10.1016/j.redox.2021.102099
  306. Youn YJ et al., “Nucleocapsid and spike proteins of SARS-CoV-2 drive neutrophil extracellular trap
    formation,” Immune Netw. 2021, 21, 2: e16. doi: https://doi.org/10.4110/in.2021.21.e16
  307. Yu J et al., “Direct activation of the alternative complement pathway by SARS-CoV-2 spike proteins
    is blocked by factor D inhibition,” Blood 2020, 136, 18: 2080–2089. doi:
    https://doi.org/10.1182/blood.2020008248
  308. Zaki H and S Khan, “SARS-CoV-2 spike protein induces inflammatory molecules through TLR2 in
    macrophages and monocytes,” J. Immunol. 2021, 206 (1_supplement): 62.07. doi:
    https://doi.org/10.4049/jimmunol.206.Supp.62.07
  309. Zaki H and S Khan, “TLR2 senses spike protein of SARS-CoV-2 to trigger inflammation,”
    J. Immunol. 2022, 208 (1_Supplement): 125.30. doi:
    https://doi.org/10.4049/jimmunol.208.Supp.125.30
  310. Zekri-Nechar K et al., “Spike Protein Subunits of SARS-CoV-2 Alter Mitochondrial Metabolism in
    Human Pulmonary Microvascular Endothelial Cells: Involvement of Factor Xa,” Dis. Markers 2022: doi: https://doi.org/10.1155/2022/1118195
  311. Zeng FM et al., “SARS-CoV-2 spike spurs intestinal inflammation via VEGF production in
    enterocytes,” EMBO Mol Med. 2022, 14: e14844. doi: https://doi.org/10.15252/emmm.202114844
  312. Zhang Q et al., “Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) membrane (M)
    and spike (S) proteins antagonize host type i interferon response,” Front Cell Infect Microbiol 2021,
    11: 766922. doi: https://doi.org/10.3389/fcimb.2021.766922
  313. Zhang RG et al., “SARS-CoV-2 spike protein receptor binding domain promotes IL-6 and IL-8
    release via ATP/P2Y2 and ERK1/2 signaling pathways in human bronchial epithelia,” Mol. Immunol.
    2024, 167: 53-61. doi: https://doi.org/10.1016/j.molimm.2024.02.005
  314. Zhang S et al., “SARS-CoV-2 Binds Platelet ACE2 to Enhance Thrombosis in COVID-19,” J.
    Hematol. Oncol. 2020, 13, 120. doi: https://doi.org/10.1186/s13045-020-00954-7
  315. Zhang Z et al., “SARS-CoV-2 spike protein dictates syncytium-mediated lymphocyte
    elimination,” Cell Death Di^er. 2021, 28: 2765–2777. doi: https://doi.org/10.1038/s41418-021-
    00782-3
  316. Zhao Y et al., “SARS-CoV-2 spike protein interacts with and activates TLR4,” Cell Res. 2021, 31:
    818–820. doi: https://doi.org/10.1038/s41422-021-00495-9
  317. Zheng Y et al., “SARS-CoV-2 Spike Protein Causes Blood Coagulation and Thrombosis by
    Competitive Binding to Heparan Sulfate,” Int. J. Biol. Macromol. 2021, 193: 1124–1129, doi:
    https://doi.org/10.1016/j.ijbiomac.2021.10.112
  318. Zhu G et al., “SARS-CoV-2 spike protein-induced host inflammatory response signature in human
    corneal epithelial cells,” Mol. Med. Rep. 2021, 24: 584. doi:
    https://doi.org/10.3892/mmr.2021.12223
  319. Zollner A et al., “Postacute COVID-19 is Characterized by Gut Viral Antigen Persistence in
    Inflammatory Bowel Diseases,” Gastroenterology 2022, 163, 2: 495-506.e8. doi:
    https://doi.org/10.1053/j.gastro.2022.04.037
  320. Zurlow M et al., “The anti-SARS-CoV-2 BNT162b2 vaccine suppresses mithramycin-induced
    erythroid diberentiation and expression of embryo-fetal globin genes in human erythroleukemia
    K562 cells.” Exp Cell Res 2023, 433, 2: 113853. doi: https://doi.org/10.1016/j.yexcr.2023.113853
    II. CATEGORIES