5G intenta comenzar en el 2020, en este video vea el comportamiento de la sangre a traves de un microscopio cuando somos expuestos a esta radiación. https://www.electricsense.com/12399/5g-radiation-dangers/
4G , 5 G y WiFi, Evidencia de riesgos para la salud relacionados con la exposición a frecuencias electromagnéticas en mujeres embarazadas y niños .
Este clip es un extracto de Take Back Your Power, una investigación crítica del fenómeno de Smart Metering y Smart Grid.
Más de 5,000 estudios ahora muestran que la radiación de RF / MW es dañina para la biología humana, los animales y las plantas. La exposición aguda y crónica a la radiación de RF (radiofrecuencia) y MW (microondas) puede, incluso a densidades de potencia muy bajas, no solo provocar los efectos negativos para la salud que se muestran en este video, sino también el daño de los iones de calcio en las células y la disfunción de las células endoteliales. , agotamiento del óxido nítrico, estrés oxidativo, interrupción de la melatonina, fugas en la barrera hematoencefálica, daño en el ADN, daño en el esperma y más. Los cambios en el metabolismo de la glucosa dentro del cerebro son observables después de solo unos minutos de uso del teléfono celular.
Los mecanismos de daños causados por la exposición a la radiación no térmica y no ionizante se están volviendo claros.
Desafortunadamente, los llamados umbrales de ‘seguridad’ mantenidos en el Reino Unido están desfasados y obsoletos, lo que permite que se introduzcan en nuestras vidas un diluvio de tecnologías altamente rentables que emiten RF. Si bien los activistas de todos los países intentan frenar y revertir la marea de estas toxinas ambientales, puede tomar medidas positivas para protegerse y proteger a su familia al limitar su exposición a dispositivos de emisión de RF y MW, como los Smart Meters. Teléfonos celulares, enrutadores y dispositivos WiFi, monitores inalámbricos para bebés, sistemas de alarma inalámbricos, consolas de juegos inalámbricos, etc.
Ver Estudio de Expertos: La exposición a la radiación de radiofrecuencia fetal de teléfonos celulares con clasificación de 800-1900 mhz afecta el desarrollo neurológico y el comportamiento en ratones.
https://www.ncbi.nlm.nih.gov/pubmed/22428084
Las evidencias sobre las propiedades biológicas de RF-EMF se acumulan progresivamente y, apuntan claramente a la existencia de interacciones de niveles múltiples entre EMF de alta frecuencia y sistemas biológicos, y a la posibilidad de oncología. y efectos no oncológicos (principalmente reproductivos, metabólicos, neurológicos, microbiológicos).
Los efectos biológicos también se han registrado a niveles de exposición por debajo de los límites reglamentarios, lo que genera crecientes dudas sobre la seguridad real de los estándares ICNIRP actualmente empleados ( Habauzit et al., 2014 ; Redmayne, 2016 ;Starkey, 2016 ).
Las preocupaciones particulares derivan de la densidad amplia (y rápidamente creciente) de dispositivos inalámbricos y antenas(también en vista de las próximas redes 5G), de la mayor susceptibilidad a RF-EMF en niños ( Meo et al., 2015 ; Redmayne, 2016; Redmayne y Johansson, 2015 ; Sangun et al., 2015 ), y de los efectos de RF-EMF a nivel celular y molecular, en particular con respecto a la capacidad de promover procesos oxidativos ( Friedman et al., 2007 ; Kazemi et al. , 2015 ; Kesari y Behari, 2012 ), daño en el ADN ( Duan et al., 2015 ; Solek et al., 2017 ), alteraciones de la expresión génica (Chen et al., 2014 ; Habauzit et al., 2014 ; Kim et al., 2017a ; Le Quement et al., 2012 ; Le Quement et al., 2014 ; Lin et al., 2016 ; Millenbaugh et al., 2008 ; Soubere Mahamoud et al., 2016 ) e influir en el desarrollo de células madre ( Chen et al., 2014 ; Eghlidospour et al., 2017 ; Shahbazi-Gahrouei et al., 2016 ).
Los mecanismos epigenéticos que modulan la expresión génica después de la exposición a tóxicos ambientales están frecuentemente involucrados en la patogénesis de una serie de enfermedades crónicas, principalmente en el caso de exposiciones tempranas que determinan los efectos del desarrollo y la aparición de enfermedades crónicas más tarde durante la vida ( Bianco-Miotto et al., 2017;Bird, 2007;Di Ciaula y Portincasa, 2014). Cabe destacar que el epigenoma también parece tener un papel relevante después de la exposición a RF-EMF, que es capaz de producir una modulación de micro-ARN ( Dasdag et al.,2015a,Dasdag et al., 2015b), cromatinaremodelación y alteraciones de los procesos de reparación del ADN ( Belyaev et al., 2009 ; Markova et al., 2005 ) y para afectar el patrón de metilación del ADN ( Mokarram et al., 2017 ).
Se necesitan urgentemente más estudios experimentales y epidemiológicos para explorar mejor y por completo los efectos sobre la salud causados en humanos por la exposición a frecuencias de RF-EMF genéricas o específicas (es decir, MMW) en diferentes grupos de edad y con una densidad de exposición creciente.
Sin embargo, subestimar la relevancia de los resultados disponibles (en particular los de modelos in vitro y animales) no parece ser éticamente aceptable ya que, como se ha observado en el razonamiento en términos de prevención primaria, «es equivalente a aceptar que un posible efecto peligroso de un agente ambiental solo puede evaluarse a posteriori , después de que el agente haya tenido tiempo de causar sus efectos nocivos ”( Tomatis, 2002 ).
Los resultados ya disponibles deberían ser suficientes para invocar el respeto del principio de precaución ( Hau et al., 2014 ; Lo, 2009 ) considerando la gran cantidad de sujetos involucrados en esta forma de exposición ambiental y clasificables como «vulnerables» ( Bracken-Roche et al. al., 2017 ), y posibles interacciones entre exposiciones múltiples y heterogéneas, superando el enfoque de un solo contaminante con la medición de la dosis interna absorbida de múltiples contaminantes (el concepto de exposoma ( Wild, 2012 )).
En el respeto del principio de la OMS «salud en todas las políticas», el desarrollo de nuevas redes de comunicación RF-EMF debe ser paralelo a la participación adecuada y activa de las instituciones públicas que operan en el campo de la salud ambiental, mediante una revisión de los límites de exposición existentes y por políticas destinadas a reducir el nivel de riesgo en la población expuesta.
Por otro lado, un conocimiento adecuado de los mecanismos fisiopatológicos que vinculan la exposición RF-EMF al riesgo para la salud también debería ser útil en la práctica clínica actual, en particular teniendo en cuenta las evidencias que apuntan al papel de los factores extrínsecos como grandes contribuyentes al riesgo de cáncer ( Wu et al., 2016 ) y al crecimiento epidemiológico progresivo de las enfermedades no transmisibles ( Pruss-Ustun et al., 2017 ).
Referencias
Adebayo et al., 2014 E.A. Adebayo, A.O. Adeeyo, A.A. Ayandele, I.O. Omomowo Effect of radiofrequency radiation from telecommunication base stations on microbial diversity and antibiotic resistanceJ. Appl. Sci. Environ. Manage., 18 (2014), pp. 669-674 View Record in ScopusGoogle ScholarAgarwal et al., 2012
A. Agarwal, A. Aponte-Mellado, B.J. Premkumar, A.Shaman, S. Gupta The effects of oxidative stress on female reproduction: a reviewReprod. Biol. Endocrinol.: RB&E, 10 (2012), p. 49CrossRefGoogle ScholarAgarwal and Bui, 2017
A. Agarwal, A.D. Bui Oxidation-reduction potential as a new marker for oxidative stress: correlation to male infertilityInvest. Clin. Urol., 58 (2017), pp. 385-399CrossRefView Record in ScopusGoogle ScholarAgarwal et al., 2009
A. Agarwal, N.R. Desai, K. Makker, A. Varghese, R. Mouradi, E. Sabanegh, R. Sharma Effects of radiofrequency electromagnetic waves (RF-EMW) from cellular phones on human ejaculated semen: an in vitro pilot studyFertil. Steril., 92 (2009), pp. 1318-1325ArticleDownload PDFView Record in ScopusGoogle ScholarAGCOM, 2017
AGCOM Indagine Conoscitiva Concernente Le Prospettive Di Sviluppo Dei Sistemi Wireless E Mobili Verso La Qunta Generazione (5G) E l’utilizzo Di Nuove Porzioni Di Spettro Al Di Sopra Dei 6 GHz Ai Sensi Della Delibera n.557/16/consAutorità per le Garanzie nelle Comunicazioni (AGCOM), Rome (2017)Google ScholarAlekseev et al., 2010
S.I. Alekseev, O.V. Gordiienko, A.A. Radzievsky, M.C.ZiskinMillimeter wave effects on electrical responses of the sural nerve in vivoBioelectromagnetics, 31 (2010), pp. 180-190View Record in ScopusGoogle ScholarAlekseev and Ziskin, 2009
S.I. Alekseev, M.C. ZiskinMillimeter-wave absorption by cutaneous blood vessels: a computational studyIEEE Trans. Biomed. Eng., 56 (2009), pp. 2380-2388CrossRefView Record in ScopusGoogle ScholarAlekseev et al., 1997
S.I. Alekseev, M.C. Ziskin, N.V. Kochetkova, M.A.BolshakovMillimeter waves thermally alter the firing rate of the Lymnaea pacemaker neuronBioelectromagnetics, 18 (1997), pp. 89-98View Record in ScopusGoogle ScholarBachschmid et al., 2013
M.M. Bachschmid, S. Schildknecht, R. Matsui, R. Zee, D. Haeussler, R.A. Cohen, D. Pimental, B. LooVascular aging: chronic oxidative stress and impairment of redox signaling-consequences for vascular homeostasis and diseaseAnn. Med., 45 (2013), pp. 17-36CrossRefView Record in ScopusGoogle ScholarBanaceur et al., 2013
S. Banaceur, S. Banasr, M. Sakly, H. AbdelmelekWhole body exposure to 2.4 GHz WIFI signals: effects on cognitive impairment in adult triple transgenic mouse models of Alzheimer’s disease (3xTg-AD)Behav. Brain Res., 240 (2013), pp. 197-201ArticleDownload PDFView Record in ScopusGoogle ScholarBarth et al., 2012
A. Barth, I. Ponocny, T. Gnambs, R. WinkerNo effects of short-term exposure to mobile phone electromagnetic fields on human cognitive performance: a meta-analysisBioelectromagnetics, 33 (2012), pp. 159-165 CrossRefView Record in ScopusGoogle ScholarBarthelemy et al., 2016
A. Barthelemy, A. Mouchard, M. Bouji, K. Blazy, R.Puigsegur, A.S. VillegierGlial markers and emotional memory in rats following acute cerebral radiofrequency exposuresEnviron. Sci. Pollut. Res. Int., 23 (2016), pp. 25343-25355CrossRefView Record in ScopusGoogle ScholarBelyaev et al., 2009
I.Y. Belyaev, E. Markova, L. Hillert, L.O. Malmgren, B.R.PerssonMicrowaves from UMTS/GSM mobile phones induce long-lasting inhibition of 53BP1/gamma-H2AX DNA repair foci in human lymphocytesBioelectromagnetics, 30 (2009), pp. 129-141CrossRefView Record in ScopusGoogle ScholarBeneduci, 2009
A. BeneduciEvaluation of the potential in vitro antiproliferative effects of millimeter waves at some therapeutic frequencies on RPMI 7932 human skin malignant melanoma cellsCell Biochem. Biophys., 55 (2009), pp. 25-32CrossRefView Record in ScopusGoogle ScholarBeneduci et al., 2007
A. Beneduci, G. Chidichimo, S. Tripepi, E. Perrotta, F.CufoneAntiproliferative effect of millimeter radiation on human erythromyeloid leukemia cell line K562 in culture: ultrastructural- and metabolic-induced changesBioelectrochemistry, 70 (2007), pp. 214-220ArticleDownload PDFView Record in ScopusGoogle ScholarBenson et al., 2013
V.S. Benson, K. Pirie, J. Schuz, G.K. Reeves, V. Beral, J.Green, Million Women, C. StudyMobile phone use and risk of brain neoplasms and other cancers: prospective studyInt. J. Epidemiol., 42 (2013), pp. 792-802CrossRefView Record in ScopusGoogle ScholarBianco-Miotto et al., 2017
T. Bianco-Miotto, J.M. Craig, Y.P. Gasser, S.J. van Dijk, S.E. OzanneEpigenetics and DOHaD: from basics to birth and beyondJ. Dev. Origins Health Dis., 8 (2017), pp. 513-519View Record in ScopusGoogle ScholarBird, 2007
A. BirdPerceptions of epigeneticsNature, 447 (2007), pp. 396-398CrossRefView Record in ScopusGoogle ScholarBirks et al., 2017
L. Birks, M. Guxens, E. Papadopoulou, J. Alexander, F.Ballester, M. Estarlich, M. Gallastegi, M. Ha, M. Haugen, A. Huss, L.Kheifets, H. Lim, J. Olsen, L. Santa-Marina, M. Sudan, R. Vermeulen, T.Vrijkotte, E. Cardis, M. Vrijheid Maternal cell phone use during pregnancy and child behavioral problems in five birth cohortsEnviron. Int., 104 (2017), pp. 122-131ArticleDownload PDFView Record in ScopusGoogle ScholarBortkiewicz et al., 2017
A. Bortkiewicz, E. Gadzicka, W. SzymczakMobile phone use and risk for intracranial tumors and salivary gland tumors – a meta-analysisInt. J. Occup. Med. Environ. Health, 30 (2017), pp. 27-43View Record in ScopusGoogle ScholarBracken-Roche et al., 2017
D. Bracken-Roche, E. Bell, M.E. Macdonald, E.RacineThe concept of ‘vulnerability’ in research ethics: an in-depth analysis of policies and guidelinesHealth Res. Policy Syst., 15 (2017), p. 8Google ScholarBrookmeyer et al., 2007
R. Brookmeyer, E. Johnson, K. Ziegler-Graham, H.M.ArrighiForecasting the global burden of Alzheimer’s diseaseAlzheimers Dement, 3 (2007), pp. 186-191ArticleDownload PDFView Record in ScopusGoogle ScholarBulgakova et al., 1996
V.G. Bulgakova, V.A. Grushina, T.I. Orlova, Z.M.Petrykina, A.N. Polin, P.P. Noks, A.A. Kononenko, A.B. RubinThe effect of millimeter-band radiation of nonthermal intensity on sensitivity of Staphylococcus to various antibioticsBiofizika, 41 (1996), pp. 1289-1293 View Record in ScopusGoogle ScholarCahill-Smith and Li, 2014
S. Cahill-Smith, J.M. LiOxidative stress, redox signalling and endothelial dysfunction in ageing-related neurodegenerative diseases: a role of NADPH oxidase 2Br. J. Clin. Pharmacol., 78 (2014), pp. 441-453CrossRefView Record in ScopusGoogle ScholarCarlberg and Hardell, 2014
M. Carlberg, L. HardellDecreased survival of glioma patients with astrocytoma grade IV (glioblastoma multiforme) associated with long-term use of mobile and cordless phonesInt. J. Environ. Res. Public Health, 11 (2014), pp. 10790-10805CrossRefView Record in ScopusGoogle ScholarChauhan et al., 2017
P. Chauhan, H.N. Verma, R. Sisodia, K.K. KesariMicrowave radiation (2.45 GHz)-induced oxidative stress: whole-body exposure effect on histopathology of Wistar ratsElectromagn. Biol. Med., 36 (2017), pp. 20-30View Record in ScopusGoogle ScholarChen et al., 2014
C. Chen, Q. Ma, C. Liu, P. Deng, G. Zhu, L. Zhang, M. He, Y.Lu, W. Duan, L. Pei, M. Li, Z. Yu, Z. ZhouExposure to 1800 MHz radiofrequency radiation impairs neurite outgrowth of embryonic neural stem cellsSci. Rep., 4 (2014), p. 5103Google ScholarChidichimo et al., 2002
G. Chidichimo, A. Beneduci, M. Nicoletta, M. Critelli, R. De Rose, Y. Tkatchenko, S. Abonante, S. Tripepi, E. PerrottaSelective inhibition of tumoral cells growth by low power millimeter wavesAnticancer Res., 22 (2002), pp. 1681-1688View Record in ScopusGoogle ScholarCohen et al., 2010
I. Cohen, R. Cahan, G. Shani, E. Cohen, A. AbramovichEffect of 99 GHz continuous millimeter wave electro-magnetic radiation on E. coli viability and metabolic activityInt. J. Radiat. Biol., 86 (2010), pp. 390-399CrossRefView Record in ScopusGoogle ScholarCommission, 2016
E. CommissionCommunication from the Commission to the European Parliament, the Council, the European Economic and Social Committee and the Committee of the Regions. 5G for Europe: An Action PlanEuropean Commission, Brussells (2016)Google ScholarCosentino et al., 2013
K. Cosentino, A. Beneduci, A. Ramundo-Orlando, G.ChidichimoThe influence of millimeter waves on the physical properties of large and giant unilamellar vesiclesJ. Biol. Phys., 39 (2013), pp. 395-410CrossRefView Record in ScopusGoogle ScholarCoureau et al., 2014
G. Coureau, G. Bouvier, P. Lebailly, P. Fabbro-Peray, A.Gruber, K. Leffondre, J.S. Guillamo, H. Loiseau, S. Mathoulin-Pelissier, R. Salamon, I. BaldiMobile phone use and brain tumours in the CERENAT case-control studyOccup. Environ. Med., 71 (2014), pp. 514-522CrossRefView Record in ScopusGoogle ScholarCrabtree et al., 2017
D.P.E. Crabtree, B.J. Herrera, S. KangThe response of human bacteria to static magnetic field and radiofrequency electromagnetic fieldJ. Microbiol., 55 (2017), pp. 809-815CrossRefView Record in ScopusGoogle ScholarDasdag and Akdag, 2016
S. Dasdag, M.Z. AkdagThe link between radiofrequencies emitted from wireless technologies and oxidative stressJ. Chem. Neuroanat., 75 (2016), pp. 85-93ArticleDownload PDFView Record in ScopusGoogle ScholarDasdag et al., 2015a
S. Dasdag, M.Z. Akdag, M.E. Erdal, N. Erdal, O.I. Ay, M.E.Ay, S.G. Yilmaz, B. Tasdelen, K. YeginEffects of 2.4 GHz radiofrequency radiation emitted from Wi-Fi equipment on microRNA expression in brain tissueInt. J. Radiat. Biol., 91 (2015), pp. 555-561CrossRefView Record in ScopusGoogle ScholarDasdag et al., 2015b
S. Dasdag, M.Z. Akdag, M.E. Erdal, N. Erdal, O.I. Ay, M.E.Ay, S.G. Yilmaz, B. Tasdelen, K. YeginLong term and excessive use of 900 MHz radiofrequency radiation alter microRNA expression in brainInt. J. Radiat. Biol., 91 (2015), pp. 306-311CrossRefView Record in ScopusGoogle ScholarDe Iuliis et al., 2009
G.N. De Iuliis, R.J. Newey, B.V. King, R.J. AitkenMobile phone radiation induces reactive oxygen species production and DNA damage in human spermatozoa in vitroPLoS One, 4 (2009), p. e6446CrossRefGoogle ScholarDel Vecchio et al., 2009
G. DelVecchio, A. Giuliani, M. Fernandez, P. Mesirca, F. Bersani, R. Pinto, L. Ardoino, G.A. Lovisolo, L. Giardino, L. CalzaContinuous exposure to 900 MHz GSM-modulated EMF alters morphological maturation of neural cellsNeurosci. Lett., 455 (2009), pp. 173-177ArticleDownload PDFView Record in ScopusGoogle ScholarDi Ciaula and Portincasa, 2014
A. Di Ciaula, P. PortincasaFat, epigenome and pancreatic diseases: interplay and common pathways from a toxic and obesogenic environmentEuro. J. Internal Med., 25 (2014), pp. 865-873ArticleDownload PDFView Record in ScopusGoogle ScholarDi Donato et al., 2012
L. Di Donato, M. Cataldo, P. Stano, R. Massa, A.Ramundo-OrlandoPermeability changes of cationic liposomes loaded with carbonic anhydrase induced by millimeter waves radiationRadiat. Res., 178 (2012), pp. 437-446CrossRefView Record in ScopusGoogle ScholarDivan et al., 2008
H.A. Divan, L. Kheifets, C. Obel, J. OlsenPrenatal and postnatal exposure to cell phone use and behavioral problems in childrenEpidemiology, 19 (2008), pp. 523-529View Record in ScopusGoogle ScholarDivan et al., 2012
H.A. Divan, L. Kheifets, C. Obel, J. OlsenCell phone use and behavioral problems in young childrenJ. Epidemiol. Commun. Health, 66 (2012), pp. 524-529CrossRefView Record in ScopusGoogle ScholarDivan et al., 2011
H.A. Divan, L. Kheifets, J. OlsenPrenatal cell phone use and developmental milestone delays among infantsScand. J. Work, Environ. Health, 37 (2011), pp. 341-348CrossRefView Record in ScopusGoogle ScholarDuan et al., 2015
W. Duan, C. Liu, L. Zhang, M. He, S. Xu, C. Chen, H. Pi, P.Gao, Y. Zhang, M. Zhong, Z. Yu, Z. ZhouComparison of the genotoxic effects induced by 50 Hz extremely low-frequency electromagnetic fields and 1800 MHz radiofrequency electromagnetic fields in GC-2 cellsRadiat. Res., 183 (2015), pp. 305-314CrossRefView Record in ScopusGoogle ScholarDurusoy et al., 2017
R. Durusoy, H. Hassoy, A. Ozkurt, A.O. KarababaMobile phone use, school electromagnetic field levels and related symptoms: a cross-sectional survey among 2150 high school students in IzmirEnviron. Health: a Global Access Sci. Source, 16 (2017), p. 51Google ScholarEghlidospour et al., 2017
M. Eghlidospour, A. Ghanbari, S.M.J. Mortazavi, H.AzariEffects of radiofrequency exposure emitted from a GSM mobile phone on proliferation, differentiation, and apoptosis of neural stem cellsAnat. Cell Biol., 50 (2017), pp. 115-123CrossRefView Record in ScopusGoogle ScholarErogul et al., 2006
O. Erogul, E. Oztas, I. Yildirim, T. Kir, E. Aydur, G. Komesli, H.C. Irkilata, M.K. Irmak, A.F. PekerEffects of electromagnetic radiation from a cellular phone on human sperm motility: an in vitro studyArch. Med. Res., 37 (2006), pp. 840-843ArticleDownload PDFView Record in ScopusGoogle ScholarFalzone et al., 2011
N. Falzone, C. Huyser, P. Becker, D. Leszczynski, D.R.FrankenThe effect of pulsed 900-MHz GSM mobile phone radiation on the acrosome reaction, head morphometry and zona binding of human spermatozoaInt. J. Androl., 34 (2011), pp. 20-26CrossRefView Record in ScopusGoogle ScholarFejes et al., 2005
I. Fejes, Z. Zavaczki, J. Szollosi, S. Koloszar, J. Daru, L. Kovacs, A. PalIs there a relationship between cell phone use and semen quality?Arch. Androl., 51 (2005), pp. 385-393CrossRefView Record in ScopusGoogle ScholarFlegal et al., 2016
K.M. Flegal, D. Kruszon-Moran, M.D. Carroll, C.D. Fryar, C.L.OgdenTrends in Obesity Among Adults in the United States, 2005 to 2014JAMA, 315 (2016), pp. 2284-2291CrossRefView Record in ScopusGoogle ScholarFombonne, 2009
E. FombonneEpidemiology of pervasive developmental disordersPediatr. Res., 65 (2009), pp. 591-598CrossRefView Record in ScopusGoogle ScholarFriedman et al., 2007
J. Friedman, S. Kraus, Y. Hauptman, Y. Schiff, R. SegerMechanism of short-term ERK activation by electromagnetic fields at mobile phone frequenciesBiochem. J., 405 (2007), pp. 559-568View Record in ScopusGoogle ScholarGeorgakis et al., 2017
M.K. Georgakis, P. Panagopoulou, P. Papathoma, A.Tragiannidis, A. Ryzhov, S. ZivkovicPerisic, S. Eser, L. Taraszkiewicz, M.Sekerija, T. Zagar, L. Antunes, A. Zborovskaya, J. Bastos, M. Florea, D.Coza, A. Demetriou, D. Agius, R.M. Strahinja, G. Sfakianos, I. Nikas, S.Kosmidis, E. Razis, A. Pourtsidis, M. Kantzanou, N. Dessypris, E.T.PetridouCentral nervous system tumours among adolescents and young adults (15-39 years) in Southern and Eastern Europe: registration improvements reveal higher incidence rates compared to the USEur. J. Cancer, 86 (2017), pp. 46-58ArticleDownload PDFView Record in ScopusGoogle ScholarGordon et al., 1969
Z.V. Gordon, E.A. Lobanova, I.A. Kitsovskaia, M.S. TolgskaiaStudy of the biological effect of electromagnetic waves of millimeter rangeBiulleten’ eksperimental’noi biologii i meditsiny, 68 (1969), pp. 37-39View Record in ScopusGoogle ScholarGorpinchenko et al., 2014I. Gorpinchenko, O. Nikitin, O. Banyra, A. ShulyakThe influence of direct mobile phone radiation on sperm qualityCent. Eur. J. Urol., 67 (2014), pp. 65-71View Record in ScopusGoogle ScholarGuxens et al., 2013
M. Guxens, M. vanEijsden, R. Vermeulen, E. Loomans, T.G. Vrijkotte, H. Komhout, R.T. van Strien, A. HussMaternal cell phone and cordless phone use during pregnancy and behaviour problems in 5-year-old childrenJ. Epidemiol. Community Health, 67 (2013), pp. 432-438CrossRefView Record in ScopusGoogle ScholarGye and Park, 2012
M.C. Gye, C.J. Park Effect of electromagnetic field exposure on the reproductive systemClin. Exp. Reprod. Med., 39 (2012), pp. 1-9CrossRefView Record in ScopusGoogle ScholarHabauzit et al., 2014 D. Habauzit, C. LeQuement, M. Zhadobov, C. Martin, M.Aubry, R. Sauleau, Y. Le DreanTranscriptome analysis reveals the contribution of thermal and the specific effects in cellular response to millimeter wave exposurePLoS One, 9 (2014), p. e109435CrossRefGoogle ScholarHardell, 2017
L. HardellWorld Health Organization, radiofrequency radiation and health − a hard nut to crack (Review)Int. J. Oncol., 51 (2017), pp. 405-413CrossRefView Record in ScopusGoogle ScholarHardell et al., 2013
L. Hardell, M. Carlberg, F. Soderqvist, K.H. MildCase-control study of the association between malignant brain tumours diagnosed between 2007 and 2009 and mobile and cordless phone useInt. J. Oncol., 43 (2013), pp. 1833-1845CrossRefView Record in ScopusGoogle ScholarHau et al., 2014
M. Hau, D. Cole, L. Vanderlinden, R. MacFarlane, C. Mee, J.Archbold, M. CampbellDevelopment of a guide to applying precaution in local public healthInt. J. Occup. Environ. Health, 20 (2014), pp. 174-184View Record in ScopusGoogle ScholarHauri et al., 2014
D.D. Hauri, B. Spycher, A. Huss, F. Zimmermann, M.Grotzer, N. von der Weid, A. Spoerri, C.E. Kuehni, M. Roosli, Swiss National C, Swiss Paediatric Oncology, G. OncologyExposure to radio-frequency electromagnetic fields from broadcast transmitters and risk of childhood cancer: a census-based cohort studyAm. J. Epidemiol., 179 (2014), pp. 843-851CrossRefView Record in ScopusGoogle ScholarHouston et al., 2016
B.J. Houston, B. Nixon, B.V. King, G.N. De Iuliis, R.J.AitkenThe effects of radiofrequency electromagnetic radiation on sperm functionReproduction, 152 (2016), pp. R263-R276CrossRefView Record in ScopusGoogle ScholarHuber et al., 2005
R. Huber, V. Treyer, J. Schuderer, T. Berthold, A. Buck, N.Kuster, H.P. Landolt, P. AchermannExposure to pulse-modulated radio frequency electromagnetic fields affects regional cerebral blood flowEur. J. Neurosci., 21 (2005), pp. 1000-1006CrossRefView Record in ScopusGoogle ScholarIARC, 2013
IARC,Non-ionizing radiation, part 2: radiofrequency electromagnetic fieldsW.H. Organization (Ed.), IARC Monographs on the Evaluation of Carcinogenic Risks to Humans, WHO – International Agency for Research on Cancer, Geneva (2013)Google ScholarICNIRP, 1998
ICNIRP,uidelines for limiting exposure to time-varying electric, magnetic, and electromagnetic fields (up to 300 GHz). International Commission on Non-Ionizing Radiation ProtectionHealth Phys., 74 (1998), pp. 494-522Google ScholarJaacks et al., 2016
L.M. Jaacks, K.R. Siegel, U.P. Gujral, K.M. NarayanType 2 diabetes: a 21 st century epidemic: best practice & researchClin. Endocrinol. Metab., 30 (2016), pp. 331-343ArticleDownload PDFView Record in ScopusGoogle ScholarJeong et al., 2015
Y.J. Jeong, G.Y. Kang, J.H. Kwon, H.D. Choi, J.K. Pack, N. Kim, Y.S. Lee, H.J. Lee1950 MHz electromagnetic fields ameliorate abeta pathology in Alzheimer’s disease miceCurr. Alzheimer Res., 12 (2015), pp. 481-492CrossRefView Record in ScopusGoogle ScholarKazemi et al., 2015
E. Kazemi, S.M. Mortazavi, A. Ali-Ghanbari, S. Sharifzadeh, R. Ranjbaran, Z. Mostafavi-Pour, F. Zal, M. HaghaniEffect of 900 MHz electromagnetic radiation on the induction of ROS in human peripheral blood mononuclear cellsJ. Biomed. Phys. Eng., 5 (2015), pp. 105-114View Record in ScopusGoogle ScholarKesari and Behari, 2012
K.K. Kesari, J. BehariEvidence for mobile phone radiation exposure effects on reproductive pattern of male rats: role of ROSElectromagn. Biol. Med., 31 (2012), pp. 213-222CrossRefView Record in ScopusGoogle ScholarKesari et al., 2011
K.K. Kesari, S. Kumar, J. Behari900-MHz microwave radiation promotes oxidation in rat brainElectromagn. Biol. Med., 30 (2011), pp. 219-234CrossRefView Record in ScopusGoogle ScholarKhramov et al., 1991R.N. Khramov, E.A. Sosunov, S.V. Koltun, E.N. Ilyasova, V.V. LednevMillimeter-wave effects on electric activity of crayfish stretch receptorsBioelectromagnetics, 12 (1991), pp. 203-214CrossRefView Record in ScopusGoogle ScholarKim et al., 2017a
J.H. Kim, H.J. Kim, D.H. Yu, H.S. Kweon, Y.H. Huh, H.R. KimChanges in numbers and size of synaptic vesicles of cortical neurons induced by exposure to 835 MHz radiofrequency-electromagnetic fieldPLoS One, 12 (2017), p. e0186416CrossRefGoogle ScholarKim et al., 2017b
J.H. Kim, D.H. Yu, Y.H. Huh, E.H. Lee, H.G. Kim, H.R. KimLong-term exposure to 835 MHz RF-EMF induces hyperactivity, autophagy and demyelination in the cortical neurons of miceSci. Rep., 7 (2017), p. 41129Google ScholarKismali et al., 2012
G. Kismali, E. Ozgur, G. Guler, A. Akcay, T. Sel, N. SeyhanThe influence of 1800 MHz GSM-like signals on blood chemistry and oxidative stress in non-pregnant and pregnant rabbitsInt. J. Radiat. Biol., 88 (2012), pp. 414-419CrossRefView Record in ScopusGoogle ScholarKlose et al., 2014
M. Klose, K. Grote, O. Spathmann, J. Streckert, M. Clemens, V.W. Hansen, A. LerchlEffects of early-onset radiofrequency electromagnetic field exposure (GSM 900 MHz) on behavior and memory in ratsRadiat. Res., 182 (2014), pp. 435-447View Record in ScopusGoogle ScholarKojima et al., 2009
M. Kojima, M. Hanazawa, Y. Yamashiro, H. Sasaki, S.Watanabe, M. Taki, Y. Suzuki, A. Hirata, Y. Kamimura, K. SasakiAcute ocular injuries caused by 60-Ghz millimeter-wave exposureHealth Phys., 97 (2009), pp. 212-218View Record in ScopusGoogle ScholarKoyama et al., 2016
S. Koyama, E. Narita, Y. Shimizu, Y. Suzuki, T. Shiina, M.Taki, N. Shinohara, J. MiyakoshiEffects of long-term exposure to 60 GHz millimeter-wavelength radiation on the genotoxicity and heat shock protein (Hsp) expression of cells derived from human eyeInt. J. Environ. Res. Public Health, 13 (2016)Google ScholarKruk and Aboul-Enein, 2017
J. Kruk, H.Y. Aboul-EneinReactive oxygen and nitrogen species in carcinogenesis: implications of oxidative stress on the progression and development of several cancer typesMini Rev. Med. Chem., 17 (2017), pp. 904-919View Record in ScopusGoogle ScholarKues et al., 1999
H.A. Kues, S.A. D’Anna, R. Osiander, W.R. Green, J.C.MonahanAbsence of ocular effects after either single or repeated exposure to 10 mW/cm(2) from a 60 GHz CW sourceBioelectromagnetics, 20 (1999), pp. 463-473View Record in ScopusGoogle ScholarKumar et al., 2013
S. Kumar, J. Behari, R. SisodiaInfluence of electromagnetic fields on reproductive system of male ratsInt. J. Radiat. Biol., 89 (2013), pp. 147-154CrossRefView Record in ScopusGoogle ScholarLe Quement et al., 2012
C. Le Quement, C. Nicolas Nicolaz, M. Zhadobov, F.Desmots, R. Sauleau, M. Aubry, D. Michel, Y. Le DreanWhole-genome expression analysis in primary human keratinocyte cell cultures exposed to 60 GHz radiationBioelectromagnetics, 33 (2012), pp. 147-158CrossRefView Record in ScopusGoogle ScholarLe Quement et al., 2014
C. Le Quement, C.N. Nicolaz, D. Habauzit, M.Zhadobov, R. Sauleau, Y. Le DreanImpact of 60-GHz millimeter waves and corresponding heat effect on endoplasmic reticulum stress sensor gene expressionBioelectromagnetics, 35 (2014), pp. 444-451CrossRefView Record in ScopusGoogle ScholarLee et al., 2011
H.J. Lee, Y.B. Jin, J.S. Lee, S.Y. Choi, T.H. Kim, J.K. Pack, H.D.Choi, N. Kim, Y.S. LeeLymphoma development of simultaneously combined exposure to two radiofrequency signals in AKR/J miceBioelectromagnetics, 32 (2011), pp. 485-492CrossRefView Record in ScopusGoogle ScholarLerchl et al., 2015
A. Lerchl, M. Klose, K. Grote, A.F. Wilhelm, O. Spathmann, T. Fiedler, J. Streckert, V. Hansen, M. ClemensTumor promotion by exposure to radiofrequency electromagnetic fields below exposure limits for humansBiochem. Biophys. Res. Commun., 459 (2015), pp. 585-590ArticleDownload PDFView Record in ScopusGoogle ScholarLewis et al., 2017
R.C. Lewis, L. Minguez-Alarcon, J.D. Meeker, P.L. Williams, G. Mezei, J.B. Ford, R. Hauser, E.S. TeamSelf-reported mobile phone use and semen parameters among men from a fertility clinicReprod. Toxicol., 67 (2017), pp. 42-47ArticleDownload PDFView Record in ScopusGoogle ScholarLi et al., 2010
X. Li, M. Du, X. Liu, W. Chen, M. Wu, J. Lin, G. WuMillimeter wave treatment promotes chondrocyte proliferation by upregulating the expression of cyclin-dependent kinase 2 and cyclin AInt. J. Mol. Med., 26 (2010), pp. 77-84ArticleDownload PDFCrossRefView Record in ScopusGoogle ScholarLi et al., 2014
X. Li, C. Liu, W. Liang, H. Ye, W. Chen, R. Lin, Z. Li, X. Liu, M.WuMillimeter wave promotes the synthesis of extracellular matrix and the proliferation of chondrocyte by regulating the voltage-gated K+ channelJ. Bone Miner. Metab., 32 (2014), pp. 367-377CrossRefView Record in ScopusGoogle ScholarLin et al., 2016
K.W. Lin, C.J. Yang, H.Y. Lian, P. CaiExposure of ELF-EMF and RF-EMF increase the rate of glucose transport and TCA cycle in budding yeastFront. Microbiol., 7 (2016), p. 1378Google ScholarLo, 2009
C.F. Lo Risks, scientific uncertainty and the approach of applying precautionary principleMed. Law, 28 (2009), pp. 283-300View Record in ScopusGoogle ScholarMarkova et al., 2005
E. Markova, L. Hillert, L. Malmgren, B.R. Persson, I.Y.BelyaevMicrowaves from GSM mobile telephones affect 53BP1 and gamma-H2AX foci in human lymphocytes from hypersensitive and healthy personsEnviron. Health Perspect., 113 (2005), pp. 1172-1177CrossRefView Record in ScopusGoogle ScholarMartens et al., 2017
A.L. Martens, P. Slottje, D.R.M. Timmermans, H.Kromhout, M. Reedijk, R.C.H. Vermeulen, T. SmidModeled and perceived exposure to radiofrequency electromagnetic fields from mobile-phone base stations and the development of symptoms over time in a general population cohortAm. J. Epidemiol., 186 (2017), pp. 210-219CrossRefView Record in ScopusGoogle ScholarMeo and Al Rubeaan, 2013
S.A. Meo, K. Al RubeaanEffects of exposure to electromagnetic field radiation (EMFR) generated by activated mobile phones on fasting blood glucoseInt. J. Occup. Med. Environ. Health, 26 (2013), pp. 235-241View Record in ScopusGoogle ScholarMeo et al., 2015
S.A. Meo, Y. Alsubaie, Z. Almubarak, H. Almutawa, Y. AlQasem, R.M. HasanatoAssociation of exposure to radio-Frequency electromagnetic field radiation (RF-EMFR) generated by mobile phone base stations with glycated hemoglobin (HbA1c) and risk of type 2 diabetes mellitusInt. J. Environ. Res. Public Health, 12 (2015), pp. 14519-14528CrossRefView Record in ScopusGoogle ScholarMillenbaugh et al., 2008
N.J. Millenbaugh, C. Roth, R. Sypniewska, V. Chan, J.S.Eggers, J.L. Kiel, R.V. Blystone, P.A. MasonGene expression changes in the skin of rats induced by prolonged 35 GHz millimeter-wave exposureRadiat. Res., 169 (2008), pp. 288-300View Record in ScopusGoogle ScholarMokarram et al., 2017
P. Mokarram, M. Sheikhi, S.M.J. Mortazavi, S. Saeb, N.ShokrpourEffect of exposure to 900 MHz GSM mobile phone radiofrequency radiation on estrogen receptor methylation status in colon cells of male sprague dawley ratsJ. Biomed. Phys. Eng., 7 (2017), pp. 79-86View Record in ScopusGoogle ScholarMomoli et al., 2017
F. Momoli, J. Siemiatycki, M.L. McBride, M.E. Parent, L.Richardson, D. Bedard, R. Platt, M. Vrijheid, E. Cardis, D. KrewskiProbabilistic multiple-bias modelling applied to the Canadian data from the INTERPHONE study of mobile phone use and risk of glioma, meningioma, acoustic neuroma, and parotid gland tumorsAm. J. Epidemiol., 186 (7) (2017), pp. 885-893CrossRefView Record in ScopusGoogle ScholarMortazavi et al., 2016
S.M. Mortazavi, S.M. Owji, M.B. Shojaei-Fard, M.Ghader-Panah, S.A. Mortazavi, A. Tavakoli-Golpayegani, M. Haghani, S.Taeb, N. Shokrpour, O. KoohiGSM 900 MHz microwave radiation-induced alterations of insulin level and histopathological changes of liver and pancreas in ratJ. Biomed. Phys. Eng., 6 (2016), pp. 235-242View Record in ScopusGoogle ScholarNewsholme et al., 2016
P. Newsholme, V.F. Cruzat, K.N. Keane, R. Carlessi, P.I.de Bittencourt Jr.Molecular mechanisms of ROS production and oxidative stress in diabetesBiochem. J., 473 (2016), pp. 4527-4550View Record in ScopusGoogle ScholarNg et al., 2012
T.P. Ng, M.L. Lim, M. Niti, S. CollinsonLong-term digital mobile phone use and cognitive decline in the elderlyBioelectromagnetics, 33 (2012), pp. 176-185CrossRefView Record in ScopusGoogle ScholarOyewopo et al., 2017
A.O. Oyewopo, S.K. Olaniyi, C.I. Oyewopo, A.T. JimohRadiofrequency electromagnetic radiation from cell phone causes defective testicular function in male Wistar ratsAndrologia, 49 (2017)Google ScholarPakhomov et al., 1997
A.G. Pakhomov, H.K. Prol, S.P. Mathur, Y. Akyel, C.B.CampbellSearch for frequency-specific effects of millimeter-wave radiation on isolated nerve functionBioelectromagnetics, 18 (1997), pp. 324-334View Record in ScopusGoogle ScholarPatterson et al., 2012
C.C. Patterson, E. Gyurus, J. Rosenbauer, O. Cinek, A.Neu, E. Schober, R.C. Parslow, G. Joner, J. Svensson, C. Castell, P.J.Bingley, E. Schoenle, P. Jarosz-Chobot, B. Urbonaite, U. Rothe, C.Krzisnik, C. Ionescu-Tirgoviste, I. Weets, M. Kocova, G. Stipancic, M.Samardzic, C.E. de Beaufort, A. Green, G.G. Dahlquist, G. SolteszTrends in childhood type 1 diabetes incidence in Europe during 1989–2008: evidence of non-uniformity over time in rates of increaseDiabetologia, 55 (2012), pp. 2142-2147CrossRefView Record in ScopusGoogle ScholarPikov et al., 2010
V. Pikov, X. Arakaki, M. Harrington, S.E. Fraser, P.H. SiegelModulation of neuronal activity and plasma membrane properties with low-power millimeter waves in organotypic cortical slicesJ. Neural Eng., 7 (2010), p. 045003CrossRefGoogle ScholarPrince et al., 2015
M. Prince, M. Guerchet, M. PrinaThe Epidemiology and Impact of Dementia: Current State and Future TrendsWorld Health Organization, Geneva (2015)http://www.who.int/mental_health/neurology/dementia/dementia_thematicbrief_epidemiology.pdfGoogle ScholarProst et al., 1994
M. Prost, G. Olchowik, W. Hautz, R. GawedaExperimental studies on the influence of millimeter radiation on light transmission through the lensKlin. Oczna, 96 (1994), pp. 257-259View Record in ScopusGoogle ScholarPruss-Ustun et al., 2017
A. Pruss-Ustun, J. Wolf, C. Corvalan, T. Neville, R. Bos, M. NeiraDiseases due to unhealthy environments: an updated estimate of the global burden of disease attributable to environmental determinants of healthJ. Public Health, 39 (2017), pp. 464-475View Record in ScopusGoogle ScholarRadzievsky et al., 2001
A.A. Radzievsky, M.A. Rojavin, A. Cowan, S.I. Alekseev, A.A. Radzievsky Jr., M.C. ZiskinPeripheral neural system involvement in hypoalgesic effect of electromagnetic millimeter wavesLife Sci., 68 (2001), pp. 1143-1151ArticleDownload PDFView Record in ScopusGoogle ScholarRedmayne, 2016
M. RedmayneInternational policy and advisory response regarding children’s exposure to radio frequency electromagnetic fields (RF-EMF)Electromagn. Biol. Med., 35 (2016), pp. 176-185CrossRefView Record in ScopusGoogle ScholarRedmayne and Johansson, 2015
M. Redmayne, O. JohanssonRadiofrequency exposure in young and old: different sensitivities in light of age-relevant natural differencesRev. Environ. Health, 30 (2015), pp. 323-335View Record in ScopusGoogle ScholarSafian et al., 2016
F. Safian, M.A. Khalili, A. Khoradmehr, F. Anbari, S. Soltani, I. HalvaeiSurvival assessment of mouse preimplantation embryos after exposure to cell phone radiationJ. Reprod. Infertil., 17 (2016), pp. 138-143View Record in ScopusGoogle ScholarSagar et al., 2017
S. Sagar, S. Dongus, A. Schoeni, K. Roser, M. Eeftens, B.Struchen, M. Foerster, N. Meier, S. Adem, M. RoosliRadiofrequency electromagnetic field exposure in everyday microenvironments in Europe: a systematic literature reviewJ. Exposure Sci. Environ. Epidemiol. (2017), 10.1038/jes.2017.13[Epub ahead of print]Google ScholarSage et al., 2015
C. Sage, D. Carpenter, L. HardellComments on SCENIHR: opinion on potential health effects of exposure to electromagnetic fieldsBioelectromagnetics, 36 (2015), pp. 480-484(2015) BioelectromagneticsGoogle ScholarSangun et al., 2015
O. Sangun, B. Dundar, S. Comlekci, A. BuyukgebizThe effects of electromagnetic field on the endocrine system in children and adolescentsPediatr. Endocrinol. Rev.: PER, 13 (2015), pp. 531-545View Record in ScopusGoogle ScholarSavica et al., 2016
R. Savica, B.R. Grossardt, J.H. Bower, J.E. Ahlskog, W.A. RoccaTime trends in the incidence of parkinson diseaseJAMA Neurol., 73 (2016), pp. 981-989CrossRefView Record in ScopusGoogle ScholarSchoeni et al., 2015
A. Schoeni, K. Roser, M. RoosliMemory performance, wireless communication and exposure to radiofrequency electromagnetic fields: a prospective cohort study in adolescentsEnviron. Int., 85 (2015), pp. 343-351ArticleDownload PDFView Record in ScopusGoogle ScholarSchuz et al., 2009
J. Schuz, G. Waldemar, J.H. Olsen, C. JohansenRisks for central nervous system diseases among mobile phone subscribers: a Danish retrospective cohort studyPLoS One, 4 (2009), p. e4389CrossRefGoogle ScholarScientific Committee on Emerging Newly Identified Health, 2015
Scientific Committee on Emerging Newly Identified Health ROpinion on potential health effects of exposure to electromagnetic fieldsBioelectromagnetics, 36 (2015), pp. 480-484Google ScholarSepehrimanesh et al., 2017M. Sepehrimanesh, N. Kazemipour, M. Saeb, S.Nazifi, D.L. DavisProteomic analysis of continuous 900-MHz radiofrequency electromagnetic field exposure in testicular tissue: a rat model of human cell phone exposureEnviron. Sci. Pollut. Res. Int., 24 (2017), pp. 13666-13673CrossRefView Record in ScopusGoogle ScholarSepehrimanesh et al., 2014
M. Sepehrimanesh, M. Saeb, S. Nazifi, N.Kazemipour, G. Jelodar, S. SaebImpact of 900 MHz electromagnetic field exposure on main male reproductive hormone levels: a Rattus norvegicus modelInt. J. Biometeorol., 58 (2014), pp. 1657-1663CrossRefView Record in ScopusGoogle ScholarShahbazi-Gahrouei et al., 2016
D. Shahbazi-Gahrouei, B. Hashemi-Beni, Z.AhmadiEffects of RF-EMF exposure from GSM mobile phones on proliferation rate of human adipose-derived stem cells: an in-vitro studyJ. Biomed. Phys. Eng., 6 (2016), pp. 243-252View Record in ScopusGoogle ScholarShapiro et al., 2013
M.G. Shapiro, M.F. Priest, P.H. Siegel, F. BezanillaThermal mechanisms of millimeter wave stimulation of excitable cellsBiophys. J., 104 (2013), pp. 2622-2628ArticleDownload PDFView Record in ScopusGoogle ScholarShaw et al., 2010
J.E. Shaw, R.A. Sicree, P.Z. ZimmetGlobal estimates of the prevalence of diabetes for 2010 and 2030Diabetes Res. Clin. Pract., 87 (2010), pp. 4-14ArticleDownload PDFView Record in ScopusGoogle ScholarShirai et al., 2017
T. Shirai, J. Wang, M. Kawabe, K. Wake, S.I. Watanabe, S.Takahashi, O. FujiwaraNo adverse effects detected for simultaneous whole-body exposure to multiple-frequency radiofrequency electromagnetic fields for rats in the intrauterine and pre- and post-weaning periodsJ. Radiat. Res. (Tokyo), 58 (2017), pp. 48-58CrossRefView Record in ScopusGoogle ScholarSoderqvist et al., 2012
F. Soderqvist, M. Carlberg, L. HardellUse of wireless phones and the risk of salivary gland tumors: a case-control studyEur. J. Cancer Prev., 21 (2012), pp. 576-579CrossRefView Record in ScopusGoogle ScholarSoghomonyan et al., 2016
D. Soghomonyan, K. Trchounian, A. TrchounianMillimeter waves or extremely high frequency electromagnetic fields in the environment: what are their effects on bacteria?Appl. Microbiol. Biotechnol., 100 (2016), pp. 4761-4771CrossRefView Record in ScopusGoogle ScholarSolek et al., 2017
P. Solek, L. Majchrowicz, D. Bloniarz, E. Krotoszynska, M.KoziorowskiPulsed or continuous electromagnetic field induce p53/p21-mediated apoptotic signaling pathway in mouse spermatogenic cells in vitro and thus may affect male fertilityToxicology, 382 (2017), pp. 84-92ArticleDownload PDFView Record in ScopusGoogle ScholarSommer et al., 2007
A.M. Sommer, A.K. Bitz, J. Streckert, V.W. Hansen, A.LerchlLymphoma development in mice chronically exposed to UMTS-modulated radiofrequency electromagnetic fieldsRadiat. Res., 168 (2007), pp. 72-80View Record in ScopusGoogle ScholarSon et al., 2017
Y. Son, J.S. Kim, Y.J. Jeong, Y.K. Jeong, J.H. Kwon, H.D. Choi, J.K. Pack, N. Kim, Y.S. Lee, H.J. LeeLong-term RF exposure on behavior and cerebral glucose metabolism in 5xFAD miceNeurosci. Lett., 666 (2017), pp. 64-69View Record in ScopusGoogle ScholarSoubere Mahamoud et al., 2016
Y. Soubere Mahamoud, M. Aite, C. Martin, M.Zhadobov, R. Sauleau, Y. Le Drean, D. HabauzitAdditive effects of millimeter waves and 2-deoxyglucose co-exposure on the human keratinocyte transcriptomePLoS One, 11 (2016), p. e0160810CrossRefGoogle ScholarStarkey, 2016
S.J. StarkeyInaccurate official assessment of radiofrequency safety by the Advisory Group on Non-ionising RadiationRev. Environ. Health, 31 (2016), pp. 493-503View Record in ScopusGoogle ScholarStasinopoulou et al., 2016
M. Stasinopoulou, A.F. Fragopoulou, A. Stamatakis, G. Mantziaras, K. Skouroliakou, I.S. Papassideri, F. Stylianopoulou, H.Lai, N. Kostomitsopoulos, L.H. MargaritisEffects of pre- and postnatal exposure to 1880–1900 MHz DECT base radiation on development in the ratReprod. Toxicol., 65 (2016), pp. 248-262ArticleDownload PDFView Record in ScopusGoogle ScholarSteliarova-Foucher et al., 2017
E. SteliarovaFoucher, M. Colombet, L.A.G. Ries, F. Moreno, A. Dolya, F. Bray, P. Hesseling, H.Y. Shin, A. Stiller, I. contributorsInternational incidence of childhood cancer, 2001–10: a population-based registry studyLancet Oncol., 18 (2017), pp. 719-731ArticleDownload PDFView Record in ScopusGoogle ScholarStevens et al., 2012
G.A. Stevens, G.M. Singh, Y. Lu, G. Danaei, J.K. Lin, M.M.Finucane, A.N. Bahalim, R.K. McIntire, H.R. Gutierrez, M. Cowan, C.J.Paciorek, F. Farzadfar, L. Riley, M. EzzatiGlobal Burden of Metabolic Risk Factors of Chronic Diseases Collaborating, G.,. National, regional, and global trends in adult overweight and obesity prevalencesPopul. Health Metrics, 10 (2012), p. 22View Record in ScopusGoogle ScholarSun et al., 2017
Y. Sun, L. Zong, Z. Gao, S. Zhu, J. Tong, Y. CaoMitochondrial DNA damage and oxidative damage in HL-60 cells exposed to 900 MHz radiofrequency fieldsMutat. Res., 797-799 (2017), pp. 7-14ArticleDownload PDFCrossRefView Record in ScopusGoogle ScholarSypniewska et al., 2010
R.K. Sypniewska, N.J. Millenbaugh, J.L. Kiel, R.V.Blystone, H.N. Ringham, P.A. Mason, F.A. WitzmannProtein changes in macrophages induced by plasma from rats exposed to 35 GHz millimeter wavesBioelectromagnetics, 31 (2010), pp. 656-663CrossRefView Record in ScopusGoogle ScholarTadevosyan et al., 2008
H. Tadevosyan, V. Kalantaryan, A. TrchounianExtremely high frequency electromagnetic radiation enforces bacterial effects of inhibitors and antibioticsCell Biochem. Biophys., 51 (2008), pp. 97-103CrossRefView Record in ScopusGoogle ScholarTaheri et al., 2017
M. Taheri, S.M. Mortazavi, M. Moradi, S. Mansouri, G.R.Hatam, F. NouriEvaluation of the Effect of Radiofrequency Radiation Emitted From Wi-Fi Router and Mobile Phone Simulator on the Antibacterial Susceptibility of Pathogenic Bacteria Listeria Monocytogenes and Escherichia Coli, 15, Dose-response: a publication of International Hormesis Society (2017)(1559325816688527)Taheri et al., 2015
M. Taheri, S.M. Mortazavi, M. Moradi, S. Mansouri, F.Nouri, S.A. Mortazavi, F. BahmanzadeganKlebsiella pneumonia, a microorganism that approves the non-linear responses to antibiotics and window theory after exposure to wi-Fi 2.4 GHz electromagnetic radiofrequency radiationJ. Biomed. Phys. Eng., 5 (2015), pp. 115-120View Record in ScopusGoogle ScholarTang et al., 2015
J. Tang, Y. Zhang, L. Yang, Q. Chen, L. Tan, S. Zuo, H. Feng, Z.Chen, G. ZhuExposure to 900 MHz electromagnetic fields activates the mkp-1/ERK pathway and causes blood-brain barrier damage and cognitive impairment in ratsBrain Res., 1601 (2015), pp. 92-101ArticleDownload PDFView Record in ScopusGoogle ScholarTangvarasittichai, 2015
S. TangvarasittichaiOxidative stress, insulin resistance, dyslipidemia and type 2 diabetes mellitusWorld J. Diabetes, 6 (2015), pp. 456-480CrossRefView Record in ScopusGoogle ScholarThomas et al., 2010S. Thomas, S. Heinrich, R. von Kries, K. RadonExposure to radio-frequency electromagnetic fields and behavioural problems in Bavarian children and adolescentsEur. J. Epidemiol., 25 (2010), pp. 135-141CrossRefView Record in ScopusGoogle ScholarTomatis, 2002
L. TomatisPrimary prevention protects public healthAnn. N. Y. Acad. Sci., 982 (2002), pp. 190-197View Record in ScopusGoogle ScholarTorgomian et al., 2013E. Torgomian, V. Oganian, C. Blbulian, A. TrchunianChanges in ion transport through membranes, ATPase activity and antibiotics effects in Enterococcus hirae after low intensity electromagnetic irradiation of 51,8 and 53,0 GHz frequenciesBiofizika, 58 (2013), pp. 674-680View Record in ScopusGoogle ScholarTorgomyan et al., 2012
H. Torgomyan, V. Ohanyan, S. Blbulyan, V.Kalantaryan, A. TrchounianElectromagnetic irradiation of Enterococcus hirae at low-intensity 51.8- and 53.0-GHz frequencies: changes in bacterial cell membrane properties and enhanced antibiotics effectsFEMS Microbiol. Lett., 329 (2012), pp. 131-137CrossRefView Record in ScopusGoogle ScholarTorgomyan et al., 2011
H. Torgomyan, H. Tadevosyan, A. TrchounianExtremely high frequency electromagnetic irradiation in combination with antibiotics enhances antibacterial effects on Escherichia coliCurr. Microbiol., 62 (2011), pp. 962-967CrossRefView Record in ScopusGoogle ScholarTorgomyan and Trchounian, 2015
H. Torgomyan, A. TrchounianThe enhanced effects of antibiotics irradiated of extremely high frequency electromagnetic field on Escherichia coli growth propertiesCell Biochem. Biophys., 71 (2015), pp. 419-424CrossRefGoogle ScholarTuomilehto, 2013
J. TuomilehtoThe emerging global epidemic of type 1 diabetesCurr. Diabetes Rep., 13 (2013), pp. 795-804CrossRefView Record in ScopusGoogle ScholarTuredi et al., 2016
S. Turedi, H. Hanci, S. Colakoglu, H. Kaya, E. OdaciDisruption of the ovarian follicle reservoir of prepubertal rats following prenatal exposure to a continuous 900-MHz electromagnetic fieldInt. J. Radiat. Biol., 92 (2016), pp. 329-337CrossRefView Record in ScopusGoogle ScholarUrbinello et al., 2014
D. Urbinello, W. Joseph, A. Huss, L. Verloock, J.Beekhuizen, R. Vermeulen, L. Martens, M. RoosliRadio-frequency electromagnetic field (RF-EMF) exposure levels in different European outdoor urban environments in comparison with regulatory limitsEnviron. Int., 68 (2014), pp. 49-54ArticleDownload PDFView Record in ScopusGoogle ScholarUsichenko et al., 2006
T.I. Usichenko, H. Edinger, V.V. Gizhko, C. Lehmann, M. Wendt, F. FeyerherdLow-intensity electromagnetic millimeter waves for pain therapyEvid.- Based Complementary Altern. Med.: eCAM, 3 (2006), pp. 201-207CrossRefView Record in ScopusGoogle ScholarUsichenko et al., 2003
T.I. Usichenko, O.I. Ivashkivsky, V.V. GizhkoTreatment of rheumatoid arthritis with electromagnetic millimeter waves applied to acupuncture points–a randomized double blind clinical studyAcupunct. Electro-Ther. Res., 28 (2003), pp. 11-18CrossRefView Record in ScopusGoogle ScholarVolkova et al., 2014
N.A. Volkova, E.V. Pavlovich, A.A. Gapon, O.T. NikolovEffects of millimeter-wave electromagnetic exposure on the morphology and function of human cryopreserved spermatozoaBull. Exp. Biol. Med., 157 (2014), pp. 574-576CrossRefView Record in ScopusGoogle ScholarWang et al., 2016
Z. Wang, L. Wang, S. Zheng, Z. Ding, H. Liu, W. Jin, Y. Pan, Z.Chen, Y. Fei, G. Chen, Z. Xu, Y. YuEffects of electromagnetic fields on serum lipids in workers of a power plantEnviron. Sci. Pollut. Res. Int., 23 (2016), pp. 2495-2504CrossRefView Record in ScopusGoogle ScholarWdowiak et al., 2007
A. Wdowiak, L. Wdowiak, H. WiktorEvaluation of the effect of using mobile phones on male fertilityAnn. Agric. Environ. Med.: AAEM, 14 (2007), pp. 169-172View Record in ScopusGoogle ScholarWHO, 2017
WHONon-Communicable Diseases – Fact Sheet No. 355World Health Organization, Geneva, Switzerland (2017)(updated June 2017 available at: http://www.who.int/mediacentre/factsheets/fs355/en/)Google ScholarWild, 2012
C.P. WildThe exposome: from concept to utilityInt. J. Epidemiol., 41 (2012), pp. 24-32CrossRefView Record in ScopusGoogle ScholarWu et al., 2016
S. Wu, S. Powers, W. Zhu, Y.A. HannunSubstantial contribution of extrinsic risk factors to cancer developmentNature, 529 (2016), pp. 43-47CrossRefView Record in ScopusGoogle ScholarXie et al., 2011
T. Xie, J. Pei, Y. Cui, J. Zhang, H. Qi, S. Chen, D. QiaoEEG changes as heat stress reactions in rats irradiated by high intensity 35 GHz millimeter wavesHealth Phys., 100 (2011), pp. 632-640CrossRefView Record in ScopusGoogle ScholarYaekashiwa et al., 2017
N. Yaekashiwa, S. Otsuki, S. Hayashi, K. KawaseInvestigation of the non-thermal effects of exposing cells to 70–300 GHz irradiation using a widely tunable sourceJ. Radiat. Res. (Tokyo) (2017), 10.1093/jrr/rrx075[Epub ahead of print]Google ScholarYakymenko et al., 2016
I. Yakymenko, O. Tsybulin, E. Sidorik, D. Henshel, O.Kyrylenko, S. KyrylenkoOxidative mechanisms of biological activity of low-intensity radiofrequency radiationElectromagn. Biol. Med., 35 (2016), pp. 186-202CrossRefView Record in ScopusGoogle ScholarYoon et al., 2015
S. Yoon, J.W. Choi, E. Lee, H. An, H.D. Choi, N. KimMobile phone use and risk of glioma: a case-control study in Korea for 2002–2007Environ. Health Toxicol., 30 (2015), p. e2015015CrossRefGoogle ScholarZalata et al., 2015
A. Zalata, A.Z. El-Samanoudy, D. Shaalan, Y. El-Baiomy, T.MostafaIn vitro effect of cell phone radiation on motility, DNA fragmentation and clusterin gene expression in human spermInt. J. Fertil. Steril., 9 (2015), pp. 129-136View Record in ScopusGoogle ScholarZhadobov et al., 2015
M. Zhadobov, S.I. Alekseev, Y. Le Drean, R. Sauleau, E.E.FesenkoMillimeter waves as a source of selective heating of skinBioelectromagnetics, 36 (2015), pp. 464-475CrossRefView Record in ScopusGoogle ScholarZhang et al., 2013
Y. Zhang, F. She, L. Li, C. Chen, S. Xu, X. Luo, M. Li, M. He, Z. Yup25/CDK5 is partially involved in neuronal injury induced by radiofrequency electromagnetic field exposureInt. J. Radiat. Biol., 89 (2013), pp. 976-984CrossRefView Record in ScopusGoogle ScholarZiskin, 2013
M.C. ZiskinMillimeter waves: acoustic and electromagneticBioelectromagnetics, 34 (2013), pp. 3-14CrossRefView Record in ScopusGoogle ScholarZubko et al., 2017
O. Zubko, R.L. Gould, H.C. Gay, H.J. Cox, M.C. Coulson, R.J.HowardEffects of electromagnetic fields emitted by GSM phones on working memory: a meta-analysisInt. J. Geriatr. Psychiatry, 32 (2017), pp. 125-135CrossRefView Record in ScopusGoogle Scholar
Wyde ME, Horn TL, Capstick MH, Ladbury JM, Koepke G, Wilson PF, Kissling GE, Stout MD, Kuster N, Melnick RL, Gauger J, Bucher JR, McCormick DL. Effect of cell phone radiofrequency radiation on body temperature in rodents: Pilot studies of the National Toxicology Program’s reverberation chamber exposure system. Bioelectromagnetics. 2018; 39:190-199 https://doi.org/10.1002/bem.22116
Capstick MH, Kuehn S, Berdinas-Torres V, Gong Y, Wilson PF, Ladbury JM, Koepke G, McCormick DL, Gauger J, Melnick RL, Kuster N. A radio frequency radiation exposure system for rodents based on reverberation chambers. IEEE Trans Electromagn Compat. 2017; 59(4):1041-1052 https://doi.org/10.1109/TEMC.2017.2649885
Gong Y, Capstick MH, Kuehn S, Wilson PF, Ladbury JM, Koepke G, McCormick DL, Melnick R, Kuster N. Life-time dosimetric assessment for mice and rats exposed in reverberation chambers for the two-year NTP cancer bioassay study on cell phone radiation. IEEE Trans Electromagn Compat. 2017; 59(6):1798-1808 https://doi.org/10.1109/TEMC.2017.2665039
Wyde M, Cesta M, Blystone C, Elmore S, Foster P, Hooth M, Kissling G, Malarkey D, Sills R, Stout M, Walker N, Witt K, Wolfe M, Bucher J. Report of partial findings from the National Toxicology Program carcinogenesis studies of cell phone radiofrequency radiation in Hsd: Sprage Dawley SD rats (whole body exposure). BioRxiv 055699 [Preprint] May 26, 2016 (modified Feb 01, 2018). https://doi.org/10.1101/055699